ﻻ يوجد ملخص باللغة العربية
The {em Wiman-Edge pencil} is the universal family $Cs/mathcal B$ of projective, genus $6$, complex-algebraic curves admitting a faithful action of the icosahedral group $Af_5$. The goal of this paper is to prove that the monodromy of $Cs/mathcal B$ is commensurable with a Hilbert modular group; in particular is arithmetic. We then give a modular interpretation of this, as well as a uniformization of $mathcal B$.
The {em Wiman-Edge pencil} is the universal family $C_t, tinmathcal B$ of projective, genus $6$, complex-algebraic curves admitting a faithful action of the icosahedral group $Af_5$. The curve $C_0$, discovered by Wiman in 1895 cite{Wiman} and called
In 1981 W.L. Edge discovered and studied a pencil $mathcal{C}$ of highly symmetric genus $6$ projective curves with remarkable properties. Edges work was based on an 1895 paper of A. Wiman. Both papers were written in the satisfying style of 19th cen
We study the discriminant of a degree 4 extension given by a deformed bidouble cover, i.e., by equations z^2= u + a w, w^2= v + bz. We first show that the discriminant surface is a quartic which is cuspidal on a twisted cubic, i.e.,is the discriminan
There have been several constructions of family of varieties with exceptional monodromy group. In most cases, these constructions give Hodge structures with high weight(Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with
Let $Y$ be an $(m+1)$-dimensional irreducible smooth complex projective variety embedded in a projective space. Let $Z$ be a closed subscheme of $Y$, and $delta$ be a positive integer such that $mathcal I_{Z,Y}(delta)$ is generated by global sections