ﻻ يوجد ملخص باللغة العربية
Let $Y$ be an $(m+1)$-dimensional irreducible smooth complex projective variety embedded in a projective space. Let $Z$ be a closed subscheme of $Y$, and $delta$ be a positive integer such that $mathcal I_{Z,Y}(delta)$ is generated by global sections. Fix an integer $dgeq delta +1$, and assume the general divisor $X in |H^0(Y,ic_{Z,Y}(d))|$ is smooth. Denote by $H^m(X;mathbb Q)_{perp Z}^{text{van}}$ the quotient of $H^m(X;mathbb Q)$ by the cohomology of $Y$ and also by the cycle classes of the irreducible components of dimension $m$ of $Z$. In the present paper we prove that the monodromy representation on $H^m(X;mathbb Q)_{perp Z}^{text{van}}$ for the family of smooth divisors $X in |H^0(Y,ic_{Z,Y}(d))|$ is irreducible.
Let $k$ be an uncountable algebraically closed field of characteristic $0$, and let $X$ be a smooth projective connected variety of dimension $2p$, appropriately embedded into $mathbb P^m$ over $k$. Let $Y$ be a hyperplane section of $X$, and let $A^
There have been several constructions of family of varieties with exceptional monodromy group. In most cases, these constructions give Hodge structures with high weight(Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with
We compute Hochschild cohomology of projective hypersurfaces starting from the Gerstenhaber-Schack complex of the (restricted) structure sheaf. We are particularly interested in the second cohomology group and its relation with deformations. We show
The monodromy group is an invariant for parameterized systems of polynomial equations that encodes structure of the solutions over the parameter space. Since the structure of real solutions over real parameter spaces are of interest in many applicati
Let $X$ be the blowup of a weighted projective plane at a general point. We study the problem of finite generation of the Cox ring of $X$. Generalizing examples of Srinivasan and Kurano-Nishida, we consider examples of $X$ that contain a negative cur