ﻻ يوجد ملخص باللغة العربية
The {em Wiman-Edge pencil} is the universal family $C_t, tinmathcal B$ of projective, genus $6$, complex-algebraic curves admitting a faithful action of the icosahedral group $Af_5$. The curve $C_0$, discovered by Wiman in 1895 cite{Wiman} and called the {em Wiman curve}, is the unique smooth, genus $6$ curve admitting a faithful action of the symmetric group $Sf_5$. In this paper we give an explicit uniformization of $mathcal B$ as a non-congruence quotient $Gammabackslash Hf$ of the hyperbolic plane $Hf$, where $Gamma<PSL_2(Z)$ is a subgroup of index $18$. We also give modular interpretations for various aspects of this uniformization, for example for the degenerations of $C_t$ into $10$ lines (resp. $5$ conics) whose intersection graph is the Petersen graph (resp. $K_5$). In the second half of this paper we give an explicit arithmetic uniformization of the Wiman curve $C_0$ itself as the quotient $Lambdabackslash Hf$, where $Lambda$ is a principal level $5$ subgroup of a certain unit spinor norm group of M{o}bius transformations. We then prove that $C_0$ is a certain moduli space of Hodge structures, endowing it with the structure of a Shimura curve of indefinite quaternionic type.
The {em Wiman-Edge pencil} is the universal family $Cs/mathcal B$ of projective, genus $6$, complex-algebraic curves admitting a faithful action of the icosahedral group $Af_5$. The goal of this paper is to prove that the monodromy of $Cs/mathcal B$
In 1981 W.L. Edge discovered and studied a pencil $mathcal{C}$ of highly symmetric genus $6$ projective curves with remarkable properties. Edges work was based on an 1895 paper of A. Wiman. Both papers were written in the satisfying style of 19th cen
We show that every coarse moduli space, parametrizing complex special linear rank two local systems with fixed boundary traces on a surface with nonempty boundary, is log Calabi-Yau in that it has a normal projective compactification with trivial log
The main goal of this work is to construct and study a reasonable compactification of the strata of the moduli space of Abelian differentials. This allows us to compute the Kodaira dimension of some strata of the moduli space of Abelian differentials
We study a pencil of K3 surfaces that appeared in the $2$-loop diagrams in Bhabha scattering. By analysing in detail the Picard lattice of the general and special members of the pencil, we identify the pencil with the celebrated Apery--Fermi pencil,