ﻻ يوجد ملخص باللغة العربية
Graph theory is important in information theory. We introduce a quantization process on graphs and apply the quantized graphs in quantum information. The quon language provides a mathematical theory to study such quantized graphs in a general framework. We give a new method to construct graphical quantum error correcting codes on quantized graphs and characterize all optimal ones. We establish a further connection to geometric group theory and construct quantum low-density parity-check stabilizer codes on the Cayley graphs of groups. Their logical qubits can be encoded by the ground states of newly constructed exactly solvable models with translation-invariant local Hamiltonians. Moreover, the Hamiltonian is gapped in the large limit when the underlying group is infinite.
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real
We give a review on entanglement purification for bipartite and multipartite quantum states, with the main focus on theoretical work carried out by our group in the last couple of years. We discuss entanglement purification in the context of quantum
Quantum error correction (QEC) is an essential concept for any quantum information processing device. Typically, QEC is designed with minimal assumptions about the noise process; this generic assumption exacts a high cost in efficiency and performanc
Based on the group structure of a unitary Lie algebra, a scheme is provided to systematically and exhaustively generate quantum error correction codes, including the additive and nonadditive codes. The syndromes in the process of error-correction dis
Continuous-time quantum error correction (CTQEC) is an approach to protecting quantum information from noise in which both the noise and the error correcting operations are treated as processes that are continuous in time. This chapter investigates C