ﻻ يوجد ملخص باللغة العربية
We study the graded geometric point of view of curvature and torsion of Q-manifolds (differential graded manifolds). In particular, we get a natural graded geometric definition of Courant algebroid curvature and torsion, which correctly restrict to Dirac structures. Depending on an auxiliary affine connection K, we introduce the K-curvature and K-torsion of a Courant algebroid connection. These are conventional tensors on the body. Finally, we compute their Ricci and scalar curvature.
The solution of the Calabi Conjecture by Yau implies that every Kahler Calabi-Yau manifold $X$ admits a metric with holonomy contained in $operatorname{SU}(n)$, and that these metrics are parametrized by the positive cone in $H^2(X,mathbb{R})$. In th
We study the (standard) cohomology $H^bullet_{st}(E)$ of a Courant algebroid $E$. We prove that if $E$ is transitive, the standard cohomology coincides with the naive cohomology $H_{naive}^bullet(E)$ as conjectured by Stienon and Xu. For a general Co
We give a complete solution to the existence problem for gravitating vortices with non-negative topological constant $c geqslant 0$. Our first main result builds on previous results by Yang and establishes the existence of solutions to the Einstein-B
We introduce a moment map picture for holomorphic string algebroids where the Hamiltonian gauge action is described by means of Morita equivalences, as suggested by higher gauge theory. The zero locus of our moment map is given by the solutions of th
We introduce and study a notion of `Sasaki with torsion structure (ST) as an odd-dimensional analogue of Kahler with torsion geometry (KT). These are normal almost contact metric manifolds that admit a unique compatible connection with 3-form torsion