ﻻ يوجد ملخص باللغة العربية
We study the (standard) cohomology $H^bullet_{st}(E)$ of a Courant algebroid $E$. We prove that if $E$ is transitive, the standard cohomology coincides with the naive cohomology $H_{naive}^bullet(E)$ as conjectured by Stienon and Xu. For a general Courant algebroid we define a spectral sequence converging to its standard cohomology. If $E$ is with split base, we prove that there exists a natural transgression homomorphism $T_3$ (with image in $H^3_{naive}(E)$) which, together with the naive cohomology, gives all $H^bullet_{st}(E)$. For generalized exact Courant algebroids, we give an explicit formula for $T_3$ depending only on the v{S}evera characteristic clas of $E$.
Let $A Rightarrow M$ be a Lie algebroid. In this short note, we prove that a pull-back of $A$ along a fibration with homologically $k$-connected fibers, shares the same deformation cohomology of $A$ up to degree $k$.
The solution of the Calabi Conjecture by Yau implies that every Kahler Calabi-Yau manifold $X$ admits a metric with holonomy contained in $operatorname{SU}(n)$, and that these metrics are parametrized by the positive cone in $H^2(X,mathbb{R})$. In th
We study the graded geometric point of view of curvature and torsion of Q-manifolds (differential graded manifolds). In particular, we get a natural graded geometric definition of Courant algebroid curvature and torsion, which correctly restrict to D
VB-groupoids and algebroids are vector bundle objects in the categories of Lie groupoids and Lie algebroids respectively, and they are related via the Lie functor. VB-groupoids and algebroids play a prominent role in Poisson and related geometries. A