ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge theory for string algebroids

218   0   0.0 ( 0 )
 نشر من قبل Roberto Rubio
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a moment map picture for holomorphic string algebroids where the Hamiltonian gauge action is described by means of Morita equivalences, as suggested by higher gauge theory. The zero locus of our moment map is given by the solutions of the Calabi system, a coupled system of equations which provides a unifying framework for the classical Calabi problem and the Hull-Strominger system. Our main results are concerned with the geometry of the moduli space of solutions, and assume a technical condition which is fulfilled in examples. We prove that the moduli space carries a pseudo-Kahler metric with Kahler potential given by the dilaton functional, a topological formula for the metric, and an infinitesimal Donaldson-Uhlenbeck-Yau type theorem. Finally, we relate our topological formula to a physical prediction for the gravitino mass in order to obtain a new conjectural obstruction for the Hull-Strominger system.



قيم البحث

اقرأ أيضاً

The solution of the Calabi Conjecture by Yau implies that every Kahler Calabi-Yau manifold $X$ admits a metric with holonomy contained in $operatorname{SU}(n)$, and that these metrics are parametrized by the positive cone in $H^2(X,mathbb{R})$. In th is work we give evidence of an extension of Yaus theorem to non-Kahler manifolds, where $X$ is replaced by a compact complex manifold with vanishing first Chern class endowed with a holomorphic Courant algebroid $Q$ of Bott-Chern type. The equations that define our notion of `best metric correspond to a mild generalization of the Hull-Strominger system, whereas the role of the second cohomology is played by an affine space of `Aeppli classes naturally associated to $Q$ via secondary holomorphic characteristic classes introduced by Donaldson
We introduce the category of holomorphic string algebroids, whose objects are Courant extensions of Atiyah Lie algebroids of holomorphic principal bundles, as considered by Bressler, and whose morphisms correspond to inner morphisms of the underlying holomorphic Courant algebroids in the sense of Severa. This category provides natural candidates for Atiyah Lie algebroids of holomorphic principal bundles for the (complexified) string group and their morphisms. Our main results are a classification of string algebroids in terms of Cech cohomology, and the construction of a locally complete family of deformations of string algebroids via a differential graded Lie algebra.
Arising from a topological twist of $mathcal{N} = 4$ super Yang-Mills theory are the Kapustin-Witten equations, a family of gauge-theoretic equations on a four-manifold parametrized by $tinmathbb{P}^1$. The parameter corresponds to a linear combinati on of two super charges in the twist. When $t=0$ and the four-manifold is a compact Kahler surface, the equations become the Simpson equations, which was originally studied by Hitchin on a compact Riemann surface, as demonstrated independently in works of Nakajima and the third-named author. At the same time, there is a notion of $lambda$-connection in the nonabelian Hodge theory of Donaldson-Corlette-Hitchin-Simpson in which $lambda$ is also valued in $mathbb{P}^1$. Varying $lambda$ interpolates between the moduli space of semistable Higgs sheaves with vanishing Chern classes on a smooth projective variety (at $lambda=0$) and the moduli space of semisimple local systems on the same variety (at $lambda=1$) in the twistor space. In this article, we utilise the correspondence furnished by nonabelian Hodge theory to describe a relation between the moduli spaces of solutions to the equations by Kapustin and Witten at $t=0$ and $t in mathbb{R} setminus { 0 }$ on a smooth, compact Kahler surface. We then provide supporting evidence for a more general form of this relation on a smooth, closed four-manifold by computing its expected dimension of the moduli space for each of $t=0$ and $t in mathbb{R} setminus { 0 }$.
We study the graded geometric point of view of curvature and torsion of Q-manifolds (differential graded manifolds). In particular, we get a natural graded geometric definition of Courant algebroid curvature and torsion, which correctly restrict to D irac structures. Depending on an auxiliary affine connection K, we introduce the K-curvature and K-torsion of a Courant algebroid connection. These are conventional tensors on the body. Finally, we compute their Ricci and scalar curvature.
Sasakian manifolds are odd-dimensional counterpart to Kahler manifolds. They can be defined as contact manifolds equipped with an invariant Kahler structure on their symplectic cone. The quotient of this cone by the homothety action is a complex mani fold called Vaisman. We study harmonic forms and Hodge decomposition on Vaisman and Sasakian manifolds. We construct a Lie superalgebra associated to a Sasakian manifold in the same way as the Kahler supersymmetry algebra is associated to a Kahler manifold. We use this construction to produce a self-contained, coordinate-free proof of the results by Tachibana, Kashiwada and Sato on the decomposition of harmonic forms and cohomology of Sasakian and Vaisman manifolds. In the last section, we compute the supersymmetry algebra of Sasakian manifolds explicitly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا