ﻻ يوجد ملخص باللغة العربية
Drift pairs are an unusual type of fine structure sometimes observed in dynamic spectra of solar radio emission. They appear as two identical short narrowband drifting stripes separated in time; both positive and negative frequency drifts are observed. Using the Low Frequency Array (LOFAR), we report unique observations of a cluster of drift pair bursts in the frequency range of 30-70 MHz made on 12 July 2017. Spectral imaging capabilities of the instrument have allowed us for the first time to resolve the temporal and frequency evolution of the source locations and sizes at a fixed frequency and along the drifting pair components. Sources of two components of a drift pair have been imaged and found to propagate in the same direction along nearly the same trajectories. Motion of the second component source is delayed in time with respect to that of the first one. The source trajectories can be complicated and non-radial; positive and negative frequency drifts correspond to opposite propagation directions. The drift pair bursts with positive and negative frequency drifts, as well as the associated broadband type-III-like bursts, are produced in the same regions. The visible source velocities are variable from zero to a few $10^4$ (up to ${sim 10^5}$) km/s, which often exceeds the velocities inferred from the drift rate ($sim 10^4$ km/s). The visible source sizes are of about $10-18$; they are more compact than typical type III sources at the same frequencies. The existing models of drift pair bursts cannot adequately explain the observed features. We discuss the key issues that need to be addressed, and in particular the anisotropic scattering of the radio waves. The broadband bursts observed simultaneously with the drift pairs differ in some aspects from common type III bursts and may represent a separate type of emission.
We present first results of a solar radio event observed with the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) at metric wavelengths. We examine a complex event consisting of multiple radio sources/bursts associated with a fast cor
Drift-pair bursts are an unusual type of solar low-frequency radio emission, which appear in the dynamic spectra as two parallel drifting bright stripes separated in time. Recent imaging spectroscopy observations allowed for the quantitative characte
Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have be
Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into
We present the first observations of quiescent active regions (ARs) using NuSTAR, a focusing hard X-ray telescope capable of studying faint solar emission from high temperature and non-thermal sources. We analyze the first directly imaged and spectra