ﻻ يوجد ملخص باللغة العربية
Drift-pair bursts are an unusual type of solar low-frequency radio emission, which appear in the dynamic spectra as two parallel drifting bright stripes separated in time. Recent imaging spectroscopy observations allowed for the quantitative characterization of the drifting pairs in terms of source size, position, and evolution. Here, the drift-pair parameters are qualitatively analyzed and compared with the newly-developed Monte Carlo ray-tracing technique simulating radio-wave propagation in the inhomogeneous anisotropic turbulent solar corona. The results suggest that the drift-pair bursts can be formed due to a combination of the refraction and scattering processes, with the trailing component being the result of turbulent reflection (turbulent radio echo). The formation of drift-pair bursts requires an anisotropic scattering with the level of plasma density fluctuations comparable to that in type III bursts, but with a stronger anisotropy at the inner turbulence scale. The anisotropic radio-wave scattering model can quantitatively reproduce the key properties of drift-pair bursts: the apparent source size and its increase with time at a given frequency, the parallel motion of the source centroid positions, and the delay between the burst components. The trailing component is found to be virtually co-spatial and following the main component. The simulations suggest that the drift-pair bursts are likely to be observed closer to the disk center and below 100 MHz due to the effects of free-free absorption and scattering. The exciter of drift-pairs is consistent with propagating packets of whistlers, allowing for a fascinating way to diagnose the plasma turbulence and the radio emission mechanism.
The Sun frequently accelerates near-relativistic electron beams that travel out through the solar corona and interplanetary space. Interacting with their plasma environment, these beams produce type III radio bursts, the brightest astrophysical radio
1.5D PIC, relativistic, fully electromagnetic (EM) simulations are used to model EM wave emission generation in the context of solar type III radio bursts. The model studies generation of EM waves by a super-thermal, hot beam of electrons injected in
The observed properties (i.e., source size, source position, time duration, decay time) of solar radio emission produced through plasma processes near the local plasma frequency, and hence the interpretation of solar radio bursts, are strongly influe
Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the g
Magnetic reconnection, a fundamentally important process in many aspects of astrophysics, is believed to be initiated by the tearing instability of an electric current sheet, a region where magnetic field abruptly changes direction and electric curre