ﻻ يوجد ملخص باللغة العربية
We present the first observations of quiescent active regions (ARs) using NuSTAR, a focusing hard X-ray telescope capable of studying faint solar emission from high temperature and non-thermal sources. We analyze the first directly imaged and spectrally resolved X-rays above 2~keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures $3.1-4.4$~MK and emission measures $1-8times 10^{46}$~cm$^{-3}$. We do not observe emission above 5~MK but our short effective exposure times restrict the spectral dynamic range. With few counts above 6~keV, we can place constraints on the presence of an additional hotter component between 5 and 12~MK of $sim 10^{46}$cm$^{-3}$ and $sim 10^{43}$ cm$^{-3}$, respectively, at least an order of magnitude stricter than previous limits. With longer duration observations and a weakening solar cycle (resulting in an increased livetime), future NuSTAR observations will have sensitivity to a wider range of temperatures as well as possible non-thermal emission.
The X-Ray Telescope (XRT) on the Japanese/USA/UK {it Hinode (Solar-B)} spacecraft has detected emission from a quiescent active region core that is consistent with nanoflare heating. The fluxes from 10 broadband X-ray filters and filter combinations
We present results from the the first campaign of dedicated solar observations undertaken by the textit{Nuclear Spectroscopic Telescope ARray} ({em NuSTAR}) hard X-ray telescope. Designed as an astrophysics mission, {em NuSTAR} nonetheless has the ca
We present broadband (3 -- 78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power-law in this energy band, spatially resolved spe
We discuss the diagnostics available to study the 5-10 MK plasma in the solar corona, which is key to understanding the heating in the cores of solar active regions. We present several simulated spectra, and show that excellent diagnostics are availa
Drift pairs are an unusual type of fine structure sometimes observed in dynamic spectra of solar radio emission. They appear as two identical short narrowband drifting stripes separated in time; both positive and negative frequency drifts are observe