ﻻ يوجد ملخص باللغة العربية
The most common species in liquid water, next to neutral H$_2$O molecules, are the H$_3$O$^+$ and OH$^-$ ions. In a dynamic picture, their exact concentrations depend on the time scale at which these are probed. Here, using a spectral-weight analysis, we experimentally resolve the fingerprints of the elusive fluctuations-born short-living H$_3$O$^+$, DH$_2$O$^+$, HD$_2$O$^+$, and D$_3$O$^+$ ions in the IR spectra of light (H$_2$O), heavy (D$_2$O), and semi-heavy (HDO) water. We find that short-living ions, with concentrations reaching $sim 2%$ of the content of water molecules, coexist with long-living pH-active ions on the picosecond timescale, thus making liquid water an effective ionic liquid in femtochemistry.
The starting point to understanding cluster properties is the putative global minimum and all the nearby local energy minima; however, locating them is computationally expensive and challenging due to a combinatorial explosion problem. The relative p
The paper describes the investigation of the properties of silver besilicate salt colloids in water medium. Ag6Si2O7 was obtained in a soft conditions, in water medium, at temperatures and pressure close to room ones. The morphology and crystallinity
When analyzing the broadband absorption spectrum of liquid water (10^10 - 10^13 Hz), we find its relaxation-resonance features to be an indication of Frenkels translation-oscillation motion of particles, which is fundamentally inherent to liquids. We
Among the many existing molecular models of water, the MB-pol many-body potential has emerged as a remarkably accurate model, capable of reproducing thermodynamic, structural, and dynamic properties across waters solid, liquid, and vapor phases. In t
An accurate ab initio theory of the H-bond structure of liquid water requires a high-level exchange correlation approximation from density functional theory. Based on the liquid structures modeled by ab initio molecular dynamics by using maximally lo