ﻻ يوجد ملخص باللغة العربية
An accurate ab initio theory of the H-bond structure of liquid water requires a high-level exchange correlation approximation from density functional theory. Based on the liquid structures modeled by ab initio molecular dynamics by using maximally localized Wannier functions as a basis, we study the infrared spectrum of water within the canonical ensemble. In particular, we employ both the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) and the state-of-the-art meta-GGA level approximation provided by the strongly constrained and appropriately normed (SCAN) functional. We demonstrate that the SCAN functional improves not only the water structure but also the theoretical infrared spectrum of water. Our analyses show that the improvement in the stretching and bending bands can be mainly attributed to better descriptions of directional H bonding and the covalency at the inter- and intramolecular levels, respectively. On the other hand, better agreements in libration and hindered translation bands are due to the improved dynamics of the H-bond network enabled by a less structured liquid in the experimental direction. The spectrum predicted by SCAN shows much better agreement with experimental data than the conventionally widely adopted PBE functional at the GGA level.
The absorption spectrum of the title compound in the spectral range of the Hydrogen-bonded OH-stretching vibration has been investigated using a five-dimensional gas phase model as well as a QM/MM classical molecular dynamics simulation in solution.
We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic gro
The most common species in liquid water, next to neutral H$_2$O molecules, are the H$_3$O$^+$ and OH$^-$ ions. In a dynamic picture, their exact concentrations depend on the time scale at which these are probed. Here, using a spectral-weight analysis
Within the framework of Kohn-Sham density functional theory (DFT), the ability to provide good predictions of water properties by employing a strongly constrained and appropriately normed (SCAN) functional has been extensively demonstrated in recent
A comprehensive microscopic understanding of ambient liquid water is a major challenge for $ab$ $initio$ simulations as it simultaneously requires an accurate quantum mechanical description of the underlying potential energy surface (PES) as well as