ﻻ يوجد ملخص باللغة العربية
(abridged) Radio recombination lines (RRLs) at frequencies $ u$ < 250 MHz trace the cold, diffuse phase of the ISM. Next generation low frequency interferometers, such as LOFAR, MWA and the future SKA, with unprecedented sensitivity, resolution, and large fractional bandwidths, are enabling the exploration of the extragalactic RRL universe. We observed the radio quasar 3C 190 (z~1.2) with the LOFAR HBA. In reducing this data for spectroscopic analysis, we have placed special emphasis on bandpass calibration. We devised cross-correlation techniques to significantly identify the presence of RRLs in a low frequency spectrum. We demonstrate the utility of this method by applying it to existing low-frequency spectra of Cassiopeia A and M 82, and to the new observations of 3C 190. RRLs have been detected in the foreground of 3C 190 at z = 1.12355 (assuming a carbon origin), owing to the first detection of RRLs outside of the local universe (first reported in Emig et al. 2019). Towards the Galactic supernova remnant Cas A, we uncover three new detections: (1) C$epsilon$-transitions ($Delta$n = 5) for the first time at low radio frequencies, (2) H$alpha$-transitions at 64 MHz with a FWHM of 3.1 km/s, the most narrow and one of the lowest frequency detections of hydrogen to date, and (3) C$alpha$ at v$_{LSR}$ = 0 km/s in the frequency range 55-78 MHz for the first time. Additionally we recover C$alpha$, C$beta$, C$gamma$, and C$delta$ from the -47 km/s and -38 km/s components. In the nearby starburst galaxy, M 82, we do not find a significant feature. Our current searches for RRLs in LOFAR observations are limited to narrow (< 100 km/s) features, owing to the relatively small number of channels available for continuum estimation. Future strategies making use of larger contiguous frequency coverage would aid calibration to deeper sensitivities and broader features.
Alpha Centauri A is the closest solar-type star to the Sun and offers an excellent opportunity to detect the thermal emission of a mature planet heated by its host star. The MIRI coronagraph on JWST can search the 1-3 AU (1-2) region around alpha Cen
Peptide bonds, as the molecular bridges that connect amino acids, are crucial to the formation of proteins. Searches and studies of molecules with embedded peptide-like bonds are thus important for the understanding of protein formation in space. Her
GrailQuest (Gamma Ray Astronomy International Laboratory for QUantum Exploration of Space-Time) is a mission concept based on a constellation (hundreds/thousands) of nano/micro/small-satellites in low (or near) Earth orbits. Each satellite hosts a no
Recent simulations of the densest portion of the Corona Borealis supercluster (A2061, A2065, A2067, and A2089) have shown virtually no possibility of extended gravitationally bound structure without inter-cluster matter (Pearson & Batuski). In contra
The upcoming launch of the James Webb Space Telescope (JWST) in less than three years is certain to bring a revolution in our understanding of many area of astrophysics, with one of the key goals being galaxy evolution. As the first proposals will be