ترغب بنشر مسار تعليمي؟ اضغط هنا

Propionamide (C2H5CONH2): The largest peptide-like molecule in space

201   0   0.0 ( 0 )
 نشر من قبل Juan Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Peptide bonds, as the molecular bridges that connect amino acids, are crucial to the formation of proteins. Searches and studies of molecules with embedded peptide-like bonds are thus important for the understanding of protein formation in space. Here we report the first tentative detection of propionamide (C2H5CONH2), the largest peptide-like molecule detected in space toward Sagittarius B2(N1) at a position called N1E that is slightly offset from the continuum peak. A new laboratory measurements of the propionamide spectrum were carried out in the 9-461 GHz, which provide good opportunity to check directly for the transition frequencies of detected interstellar lines of propionamide. Our observing result indicates that propionamide emission comes from the warm, compact cores in Sagittarius B2, in which massive protostellars are forming. The column density of propionamide toward Sgr B2(N1E) was derived to be 1.5times 10^{16} cm^-2, which is three fifths of that of acetamide, and one nineteenth of that of formamide. This detection suggests that large peptide-like molecules can form and survive during star-forming process and may form more complex molecules in the interstellar medium. The detection of propionamide bodes well for the presence of polypeptides, as well as other complex prebiotic molecules in the interstellar medium.



قيم البحث

اقرأ أيضاً

Peptide-like bond molecules, which can take part to the formation of proteins in a primitive Earth environment, have been detected up to now only towards a few sources. We present a study of HNCO, HC(O)NH$_{2}$, CH$_{3}$NCO, CH$_{3}$C(O)NH$_{2}$, CH$ _{3}$NHCHO, CH$_{3}$CH$_{2}$NCO, NH$_{2}$C(O)NH$_{2}$, NH$_{2}$C(O)CN, and HOCH$_{2}$C(O)NH$_{2}$ towards the hot core G31.41+0.31. We have used the spectrum obtained from the ALMA 3mm spectral survey GUAPOS, with an angular resolution of 1.2$times$1.2 ($sim$4500 au), to derive column densities of all the molecular species, together with other 0.2$times$0.2 ($sim$750 au) ALMA observations to study the morphology of HNCO, HC(O)NH$_{2}$ and CH$_{3}$C(O)NH$_{2}$. We have detected HNCO, HC(O)NH$_{2}$, CH$_{3}$NCO, CH$_{3}$C(O)NH$_{2}$, and CH$_{3}$NHCHO, for the first time all together outside the Galactic center. We have obtained molecular fractional abundances with respect to H$_{2}$ from 10$^{-7}$ down to a few 10$^{-9}$ and with respect to CH$_{3}$OH from 10$^{-3}$ to $sim$4$times$10$^{-2}$. From the comparison with other sources, we find that regions in an earlier stage of evolution, such as pre-stellar cores, show abundances at least two orders of magnitude lower than those in hot cores, hot corinos or shocked regions. Moreover, molecular abundance ratios towards different sources are found to be consistent between them within $sim$1 order of magnitude, regardless of the physical properties (e.g. different masses and luminosities), or the source position throughout the Galaxy. New correlations between pairs of molecular abundances have also been found. These results suggest that all these species are formed on grain surfaces in early evolutionary stages of molecular clouds, and that they are subsequently released back to the gas-phase through thermal desorption or shock-triggered desorption.
New insights into the formation of interstellar formamide, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction NH2 + H2CO -> NH2CHO + H. Contrarily to what previously sug gested, this reaction is essentially barrierless and can, therefore, occur under the low temperature conditions of interstellar objects thus providing a facile formation route of formamide. The rate coefficient parameters for the reaction channel leading to NH2CHO + H have been calculated to be A = 2.6x10^{-12} cm^3 s^{-1}, beta = -2.1 and gamma = 26.9 K in the range of temperatures 10-300 K. Including these new kinetic data in a refined astrochemical model, we show that the proposed mechanism can well reproduce the abundances of formamide observed in two very different interstellar objects: the cold envelope of the Sun-like protostar IRAS16293-2422 and the molecular shock L1157-B2. Therefore, the major conclusion of this Letter is that there is no need to invoke grain-surface chemistry to explain the presence of formamide provided that its precursors, NH2 and H2CO, are available in the gas-phase.
Cell membranes are a key element of life because they keep the genetic material and metabolic machinery together. All present cell membranes are made of phospholipids, yet the nature of the first membranes and the origin of phospholipids are still un der debate. We report here the first detection in space of ethanolamine, NH$_2$CH$_2$CH$_2$OH, which forms the hydrophilic head of the simplest and second most abundant phospholipid in membranes. The molecular column density of ethanolamine in interstellar space is $N$=(1.51$pm$0.07)$times$10$^{13}$ cm$^{-2}$, implying a molecular abundance with respect to H$_2$ of (0.9-1.4)$times$10$^{-10}$. Previous studies reported its presence in meteoritic material but they suggested that it is synthesized in the meteorite itself by decomposition of amino acids. However, we find that the proportion of the molecule with respect to water in the interstellar medium is similar to the one found in the meteorite (10$^{-6}$). These results indicate that ethanolamine forms efficiently in space and, if delivered onto early Earth, it could have contributed to the assembling and early evolution of primitive membranes.
We have observed the Class I protostar TMC-1A in the Taurus molecular cloud using the Submillimeter Array (SMA) and the Atacama Large Millimeter/submillimeter Array (ALMA) in the linearly polarized 1.3 mm continuum emission at angular resolutions of ~3 and ~0.3, respectively. The ALMA observations also include CO, 13CO, and C18O J=2-1 spectral lines. The SMA observations trace magnetic fields on the 1000-au scale, the directions of which are neither parallel nor perpendicular to the outflow direction. Applying the Davis-Chandrasekhar-Fermi method to the SMA polarization angle dispersion, we estimate a field strength in the TMC-1A envelope of 1-5 mG. It is consistent with the field strength needed to reduce the radial infall velocity to the observed value, which is substantially less than the local} free-fall velocity. The ALMA polarization observations consist of two distinct components -- a central component and a north/south component. The central component shows polarization directions in the disk minor axis to be azimuthal, suggesting dust self-scattering in the TMC-1A disk. The north/south component is located along the outflow axis and the polarization directions are aligned with the outflow direction. We discuss possible origins of this polarization structure, including grain alignment by a toroidal magnetic field and mechanical alignment by the gaseous outflow. In addition, we discover a spiral-like residual in the total intensity (Stokes I) for the first time. The C18O emission suggests that material in the spiral-like structure is infalling at a speed that is 20% of the local Keplerian speed.
(abridged) Radio recombination lines (RRLs) at frequencies $ u$ < 250 MHz trace the cold, diffuse phase of the ISM. Next generation low frequency interferometers, such as LOFAR, MWA and the future SKA, with unprecedented sensitivity, resolution, and large fractional bandwidths, are enabling the exploration of the extragalactic RRL universe. We observed the radio quasar 3C 190 (z~1.2) with the LOFAR HBA. In reducing this data for spectroscopic analysis, we have placed special emphasis on bandpass calibration. We devised cross-correlation techniques to significantly identify the presence of RRLs in a low frequency spectrum. We demonstrate the utility of this method by applying it to existing low-frequency spectra of Cassiopeia A and M 82, and to the new observations of 3C 190. RRLs have been detected in the foreground of 3C 190 at z = 1.12355 (assuming a carbon origin), owing to the first detection of RRLs outside of the local universe (first reported in Emig et al. 2019). Towards the Galactic supernova remnant Cas A, we uncover three new detections: (1) C$epsilon$-transitions ($Delta$n = 5) for the first time at low radio frequencies, (2) H$alpha$-transitions at 64 MHz with a FWHM of 3.1 km/s, the most narrow and one of the lowest frequency detections of hydrogen to date, and (3) C$alpha$ at v$_{LSR}$ = 0 km/s in the frequency range 55-78 MHz for the first time. Additionally we recover C$alpha$, C$beta$, C$gamma$, and C$delta$ from the -47 km/s and -38 km/s components. In the nearby starburst galaxy, M 82, we do not find a significant feature. Our current searches for RRLs in LOFAR observations are limited to narrow (< 100 km/s) features, owing to the relatively small number of channels available for continuum estimation. Future strategies making use of larger contiguous frequency coverage would aid calibration to deeper sensitivities and broader features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا