ﻻ يوجد ملخص باللغة العربية
GrailQuest (Gamma Ray Astronomy International Laboratory for QUantum Exploration of Space-Time) is a mission concept based on a constellation (hundreds/thousands) of nano/micro/small-satellites in low (or near) Earth orbits. Each satellite hosts a non-collimated array of scintillator crystals coupled with Silicon Drift Detectors with broad energy band coverage (keV-MeV range) and excellent temporal resolution ( below or equal 100 nanoseconds) each with effective area around 100 cm2. This simple and robust design allows for mass-production of the satellites of the fleet. This revolutionary approach implies a huge reduction of costs, flexibility in the segmented launching strategy, and an incremental long-term plan to increase the number of detectors and their performance: a living observatory for next-generation, space-based astronomical facilities. GrailQuest is conceived as an all-sky monitor for fast localisation of high signal-to-noise ratio transients in the X/gamma-ray band, e.g. the elusive electromagnetic counterparts of gravitational wave events. Robust temporal triangulation techniques will allow unprecedented localisation capabilities, in the keV-MeV band, of a few arcseconds or below, depending on the temporal structure of the transient event. The ambitious ultimate goal of this mission is to perform the first experiment, in quantum gravity, to directly probe space-time structure down to the minuscule Planck scale, by constraining or measuring a first order dispersion relation for light in vacuo. This is obtained by detecting delays between photons of different energies in the prompt emission of Gamma-ray Bursts.
The Origins Space Telescope (Origins) is one of four science and technology definition studies selected by National Aeronautics and Space Administration (NASA) in preparation of the 2020 Astronomy and Astrophysics Decadal survey in the US. Origins wi
Since the birth of X-ray Astronomy, spectacular advances have been seen in the imaging, spectroscopic and timing studies of the hot and violent X-ray Universe, and further leaps forward are expected in the future. On the other hand, polarimetry is ve
This paper presents the ESA Voyage 2050 White Paper for a concept of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA). It addresses the science case and some implementation issues of a space-borne radio interferometric system for ultra-s
A new all-sky visible and Near-InfraRed (NIR) space astrometry mission with a wavelength cutoff in the K-band is not just focused on a single or small number of key science cases. Instead, it is extremely broad, answering key science questions in nea
Sky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accur