ﻻ يوجد ملخص باللغة العربية
We prove a Hardy-type inequality for the gradient of the Heisenberg Laplacian on open bounded convex polytopes on the first Heisenberg Group. The integral weight of the Hardy inequality is given by the distance function to the boundary measured with respect to the Carnot-Carath{e}odory metric. The constant depends on the number of hyperplanes, given by the boundary of the convex polytope, which are not orthogonal to the hyperplane $x_3=0$.
We establish sharp Hardy-Adams inequalities on hyperbolic space $mathbb{B}^{4}$ of dimension four. Namely, we will show that for any $alpha>0$ there exists a constant $C_{alpha}>0$ such that [ int_{mathbb{B}^{4}}(e^{32pi^{2} u^{2}}-1-32pi^{2} u^{2})d
We study Riesz means of the eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on bounded domains. We obtain an inequality with a sharp leading term and an additional lower order term, improving the result of Hanson and Laptev.
We prove a sharp Hardy inequality for fractional integrals for functions that are supported on a general domain. The constant is the same as the one for the half-space and hence our result settles a recent conjecture of Bogdan and Dyda.
We derive Hardy type inequalities for a large class of sub-elliptic operators that belong to the class of $Delta_lambda$-Laplacians and find explicit values for the constants involved. Our results generalize previous inequalities obtained for Grushin
We consider a general class of sharp $L^p$ Hardy inequalities in $R^N$ involving distance from a surface of general codimension $1leq kleq N$. We show that we can succesively improve them by adding to the right hand side a lower order term with optim