ﻻ يوجد ملخص باللغة العربية
Efficient high order numerical methods for evolving the solution of an ordinary differential equation are widely used. The popular Runge--Kutta methods, linear multi-step methods, and more broadly general linear methods, all have a global error that is completely determined by analysis of the local truncation error. In prior work in we investigated the interplay between the local truncation error and the global error to construct {em error inhibiting schemes} that control the accumulation of the local truncation error over time, resulting in a global error that is one order higher than expected from the local truncation error. In this work we extend our error inhibiting framework to include a broader class of time-discretization methods that allows an exact computation of the leading error term, which can then be post-processed to obtain a solution that is two orders higher than expected from truncation error analysis. We define sufficient conditions that result in a desired form of the error and describe the construction of the post-processor. A number of new explicit and implicit methods that have this property are given and tested on a variety of ordinary and partial differential equation. We show that these methods provide a solution that is two orders higher than expected from truncation error analysis alone.
High order implicit-explicit (IMEX) methods are often desired when evolving the solution of an ordinary differential equation that has a stiff part that is linear and a non-stiff part that is nonlinear. This situation often arises in semi-discretizat
High order methods are often desired for the evolution of ordinary differential equations, in particular those arising from the semi-discretization of partial differential equations. In prior work in we investigated the interplay between the local tr
Systems driven by multiple physical processes are central to many areas of science and engineering. Time discretization of multiphysics systems is challenging, since different processes have different levels of stiffness and characteristic time scale
Many complex applications require the solution of initial-value problems where some components change fast, while others vary slowly. Multirate schemes apply different step sizes to resolve different components of the system, according to their dynam
We consider the development of high order space and time numerical methods based on Implicit-Explicit (IMEX) multistep time integrators for hyperbolic systems with relaxation. More specifically, we consider hyperbolic balance laws in which the convec