ترغب بنشر مسار تعليمي؟ اضغط هنا

Implicit-Explicit multistep methods for hyperbolic systems with multiscale relaxation

250   0   0.0 ( 0 )
 نشر من قبل Giacomo Dimarco
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the development of high order space and time numerical methods based on Implicit-Explicit (IMEX) multistep time integrators for hyperbolic systems with relaxation. More specifically, we consider hyperbolic balance laws in which the convection and the source term may have very different time and space scales. As a consequence the nature of the asymptotic limit changes completely, passing from a hyperbolic to a parabolic system. From the computational point of view, standard numerical methods designed for the fluid-dynamic scaling of hyperbolic systems with relaxation present several drawbacks and typically lose efficiency in describing the parabolic limit regime. In this work, in the context of Implicit-Explicit linear multistep methods we construct high order space-time discretizations which are able to handle all the different scales and to capture the correct asymptotic behavior, independently from its nature, without time step restrictions imposed by the fast scales. Several numerical examples confirm the theoretical analysis.



قيم البحث

اقرأ أيضاً

Time integration methods for solving initial value problems are an important component of many scientific and engineering simulations. Implicit time integrators are desirable for their stability properties, significantly relaxing restrictions on time step size. However, implicit methods require solutions to one or more systems of nonlinear equations at each timestep, which for large simulations can be prohibitively expensive. This paper introduces a new family of linearly implicit multistep methods (LIMM), which only requires the solution of one linear system per timestep. Order conditions and stability theory for these methods are presented, as well as design and implementation considerations. Practical methods of order up to five are developed that have similar error coefficients, but improved stability regions, when compared to the widely used BDF methods. Numerical testing of a self-starting variable stepsize and variable order implementation of the new LIMM methods shows measurable performance improvement over a similar BDF implementation.
Splitting is a method to handle application problems by splitting physics, scales, domain, and so on. Many splitting algorithms have been designed for efficient temporal discretization. In this paper, our goal is to use temporal splitting concepts in designing machine learning algorithms and, at the same time, help splitting algorithms by incorporating data and speeding them up. Since the spitting solution usually has an explicit and implicit part, we will call our method hybrid explicit-implict (HEI) learning. We will consider a recently introduced multiscale splitting algorithms. To approximate the dynamics, only a few degrees of freedom are solved implicitly, while others explicitly. In this paper, we use this splitting concept in machine learning and propose several strategies. First, the implicit part of the solution can be learned as it is more difficult to solve, while the explicit part can be computed. This provides a speed-up and data incorporation for splitting approaches. Secondly, one can design a hybrid neural network architecture because handling explicit parts requires much fewer communications among neurons and can be done efficiently. Thirdly, one can solve the coarse grid component via PDEs or other approximation methods and construct simpler neural networks for the explicit part of the solutions. We discuss these options and implement one of them by interpreting it as a machine translation task. This interpretation successfully enables us using the Transformer since it can perform model reduction for multiple time series and learn the connection. We also find that the splitting scheme is a great platform to predict the coarse solution with insufficient information of the target model: the target problem is partially given and we need to solve it through a known problem. We conduct four numerical examples and the results show that our method is stable and accurate.
We are interested in high-order linear multistep schemes for time discretization of adjoint equations arising within optimal control problems. First we consider optimal control problems for ordinary differential equations and show loss of accuracy fo r Adams-Moulton and Adams-Bashford methods, whereas BDF methods preserve high--order accuracy. Subsequently we extend these results to semi--lagrangian discretizations of hyperbolic relaxation systems. Computational results illustrate theoretical findings.
119 - Erik Burman , Johnny Guzman 2020
We consider a finite element method with symmetric stabilisation for the discretisation of the transient convection--diffusion equation. For the time-discretisation we consider either the second order backwards differentiation formula or the Crank-Ni colson method. Both the convection term and the associated stabilisation are treated explicitly using an extrapolated approximate solution. We prove stability of the method and the $tau^2 + h^{p+{frac12}}$ error estimates for the $L^2$-norm under either the standard hyperbolic CFL condition, when piecewise affine ($p=1$) approximation is used, or in the case of finite element approximation of order $p ge 1$, a stronger, so-called $4/3$-CFL, i.e. $tau leq C h^{4/3}$. The theory is illustrated with some numerical examples.
128 - Adrian Sandu 2020
This paper studies fixed-step convergence of implicit-explicit general linear methods. We focus on a subclass of schemes that is internally consistent, has high stage order, and favorable stability properties. Classical, index-1 differential algebrai c equation, and singular perturbation convergence analyses results are given. For all these problems IMEX GLMs from the class of interest converge with the full theoretical orders under general assumptions. The convergence results require the time steps to be sufficiently small, with upper bounds that are independent on the stiffness of the problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا