ﻻ يوجد ملخص باللغة العربية
High order methods are often desired for the evolution of ordinary differential equations, in particular those arising from the semi-discretization of partial differential equations. In prior work in we investigated the interplay between the local truncation error and the global error to construct error inhibiting general linear methods (GLMs) that control the accumulation of the local truncation error over time. Furthermore we defined sufficient conditions that allow us to post-process the final solution and obtain a solution that is two orders of accuracy higher than expected from truncation error analysis alone. In this work we extend this theory to the class of two-derivative GLMs. We define sufficient conditions that control the growth of the error so that the solution is one order higher than expected from truncation error analysis, and furthermore define the construction of a simple post-processor that will extract an additional order of accuracy. Using these conditions as constraints, we develop an optimization code that enables us to find explicit two-derivative methods up to eighth order that have favorable stability regions, explicit strong stability preserving methods up to seventh order, and A-stable implicit methods up to fifth order. We numerically verify the order of convergence of a selection of these methods, and the total variation diminishing performance of some of the SSP methods. We confirm that the methods found perform as predicted by the theory developed herein.
High order implicit-explicit (IMEX) methods are often desired when evolving the solution of an ordinary differential equation that has a stiff part that is linear and a non-stiff part that is nonlinear. This situation often arises in semi-discretizat
Efficient high order numerical methods for evolving the solution of an ordinary differential equation are widely used. The popular Runge--Kutta methods, linear multi-step methods, and more broadly general linear methods, all have a global error that
The context of this paper is the simulation of parameter-dependent partial differential equations (PDEs). When the aim is to solve such PDEs for a large number of parameter values, Reduced Basis Methods (RBM) are often used to reduce computational co
We derive a residual based a-posteriori error estimate for the outer normal derivative of approximations to Poissons problem. By analyzing the solution of the adjoint problem, we show that error indicators in the bulk may be defined to be of higher o
We introduce and analyze a class of Galerkin-collocation discretization schemes in time for the wave equation. Its conceptual basis is the establishment of a direct connection between the Galerkin method for the time discretization and the classical