ﻻ يوجد ملخص باللغة العربية
We report comparative experimental and theoretical studies of second and third harmonic generation from a 20nm-thick indium tin oxide layer in proximity of the epsilon-near-zero condition. Using a tunable OPA laser we record both spectral and angular dependence of the generated harmonic signals close to this particular point. In addition to the enhancement of the second harmonic efficiency close to the epsilon-near-zero wavelength, at oblique incidence third harmonic generation displays unusual behavior, predicted but not observed before. We implement a comprehensive, first-principles hydrodynamic approach able to simulate our experimental conditions. The model is unique, flexible, and able to capture all major physical mechanisms that drive the electrodynamic behavior of conductive oxide layers: nonlocal effects, which blueshift the epsilon-near-zero resonance by tens of nanometers; plasma frequency redshift due to variations of the effective mass of hot carriers; charge density distribution inside the layer, which determines nonlinear surface and magnetic interactions; and the nonlinearity of the background medium triggered by bound electrons. We show that by taking these contributions into account our theoretical predictions are in very good qualitative and quantitative agreement with our experimental results. We show that by taking these contributions into account our theoretical predictions are in very good qualitative and quantitative agreement with our experimental results. We expect that our results can be extended to other geometries where ENZ nonlinearity plays an important role.
We show a new path to {epsilon}~0 materials without resorting to metal-based metamaterial composites. A medium that can be modeled using Lorentz oscillators usually displays {epsilon}=0 crossing points, e.g. {epsilon}=0 at {lambda}~7{mu}m and 20{mu}m
Hot electrons dominate the ultrafast ($sim$fs-ps) optical and electronic properties of metals and semiconductors and they are exploited in a variety of applications including photovoltaics and photodetection. We perform power-dependent third harmonic
We present a new theoretical approach to the study of second and third harmonic generation from metallic nanostructures and nanocavities filled with a nonlinear material, in the ultrashort pulse regime. We model the metal as a two-component medium, u
Second and third harmonic generation in the opaque region of a GaAs wafer is experimentally observed both in transmission and reflection. These harmonic components can propagate through an opaque material as long as the pump is tuned to a region of t
We predict and experimentally observe the enhancement by three orders of magnitude of phase mismatched second and third harmonic generation in a GaAs cavity at 650nm and 433nm, respectively, well above the absorption edge. Phase locking between the p