ترغب بنشر مسار تعليمي؟ اضغط هنا

Field Localization and Enhancement of Phase Locked Second and Third Harmonic Generation in Absorbing Semiconductor Cavities

147   0   0.0 ( 0 )
 نشر من قبل Michael Scalora
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict and experimentally observe the enhancement by three orders of magnitude of phase mismatched second and third harmonic generation in a GaAs cavity at 650nm and 433nm, respectively, well above the absorption edge. Phase locking between the pump and the harmonics changes the effective dispersion of the medium and inhibits absorption. Despite hostile conditions the harmonics become localized inside the cavity leading to relatively large conversion efficiencies. Field localization plays a pivotal role and ushers in a new class of semiconductor-based devices in the visible and UV ranges.



قيم البحث

اقرأ أيضاً

We present a new theoretical approach to the study of second and third harmonic generation from metallic nanostructures and nanocavities filled with a nonlinear material, in the ultrashort pulse regime. We model the metal as a two-component medium, u sing the hydrodynamic model to describe free electrons, and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and to harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We study the effects of incident TE- and TM-polarized fields and show that a simple re-examination of the basic equations reveals additional exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.
Second and third harmonic generation in the opaque region of a GaAs wafer is experimentally observed both in transmission and reflection. These harmonic components can propagate through an opaque material as long as the pump is tuned to a region of t ransparency or semi-transparency, and correspond to the inhomogeneous solutions of Maxwells equations with nonlinear polarization sources. We show that measurement of the angular and polarization dependence of the observed harmonic components allows one to infer the different nonlinear mechanisms that trigger these processes, including bulk nonlinearity, magnetic Lorentz and surface contributions. Experimental results are compared with a detailed numerical model that takes into account these different effects.
We show a new path to {epsilon}~0 materials without resorting to metal-based metamaterial composites. A medium that can be modeled using Lorentz oscillators usually displays {epsilon}=0 crossing points, e.g. {epsilon}=0 at {lambda}~7{mu}m and 20{mu}m for SiO2 and CaF2, respectively. We show that a Lorentz medium yields a singularity-driven enhancement of the electric field followed by dramatic lowering of thresholds for a plethora of nonlinear optical phenomena. We illustrate the remarkable enhancement of second and third harmonic generation in a layer of {epsilon}~0 material 20nm thick, and discuss the role of nonlinear surface sources.
Semiconductor nanowires (NWs) are promising for realizing various on-chip nonlinear optical devices, due to their nanoscale lateral confinement and strong light-matter interaction. However, high-intensity pulsed pump lasers are typically needed to ex ploit their optical nonlinearity because light couples poorly with nanometric-size wires. Here, we demonstrate microwatts continuous-wave light pumped second harmonic generation (SHG) in AlGaAs NWs by integrating them with silicon planar photonic crystal cavities. Light-NW coupling is enhanced effectively by the extremely localized cavity mode at the subwavelength scale. Strong SHG is obtained even with a continuous-wave laser excitation with a pump power down to ~3 uW, and the cavity-enhancement factor is estimated around 150. Additionally, in the integrated device, the NWs SHG is more than two-order of magnitude stronger than third harmonic generations in the silicon slab, though the NW only couple s with less than 1% of the cavity mode. This significantly reduced power-requirement of NWs nonlinear frequency conversion would promote NW-based building blocks for nonlinear optics, specially in chip-integrated coherent light sources, entangled photon-pairs and signal processing devices.
We simulate and discuss novel spatio-temporal propagation effects that relate specifically to pulsed, phase-mismatched second harmonic generation in a negative index material having finite length. Using a generic Drude model for the dielectric permit tivity and magnetic permeability, the fundamental and second harmonic frequencies are tuned so that the respective indices of refraction are negative for the pump and positive for the second harmonic signal. A phase-locking mechanism causes part of the second harmonic signal generated at the entry surface to become trapped and dragged along by the pump and to refract negatively, even though the index of refraction at the second harmonic frequency is positive. These circumstances culminate in the creation of an anomalous state consisting of a forward-moving second harmonic wave packet that has negative wave vector and momentum density, which in turn leads to non-specular reflections at intervening material interfaces. The forward-generated second harmonic signal trapped under the pump pulse propagates forward, but has all the attributes of a reflected pulse, similar to its twin counterpart generated at the surface and freely propagating backward away from the interface. This describes a new state of negative refraction, associated with nonlinear frequency conversion and parametric processes, whereby a beam generated at the interface can refract negatively even though the index of refraction at that wavelength is positive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا