ﻻ يوجد ملخص باللغة العربية
Effective congestion control for data center networks is becoming increasingly challenging with a growing amount of latency sensitive traffic, much fatter links, and extremely bursty traffic. Widely deployed algorithms, such as DCTCP and DCQCN, are still far from optimal in many plausible scenarios, particularly for tail latency. Many operators compensate by running their networks at low average utilization, dramatically increasing costs. In this paper, we argue that we have reached the practical limits of end-to-end congestion control. Instead, we propose, implement, and evaluate a new congestion control architecture called Backpressure Flow Control (BFC). BFC provides per-hop per-flow flow control, but with bounded state, constant-time switch operations, and careful use of buffers. We demonstrate BFCs feasibility by implementing it on Tofino2, a state-of-the-art P4-based programmable hardware switch. In simulation, we show that BFC achieves near optimal throughput and tail latency behavior even under challenging conditions such as high network load and incast cross traffic. Compared to existing end-to-end schemes, BFC achieves 2.3 - 60 X lower tail latency for short flows and 1.6 - 5 X better average completion time for long flows.
A cross-layer cognitive radio system is designed to support unicast and multicast traffic with integration of dynamic spectrum access (DSA), backpressure algorithm, and network coding for multi-hop networking. The full protocol stack that operates wi
We consider a set of flows passing through a set of servers. The injection rate into each flow is governed by a flow control that increases the injection rate when all the servers on the flows path are empty and decreases the injection rate when some
Providing resilient network control is a critical concern for deploying Software-Defined Networking (SDN) into Wide-Area Networks (WANs). For performance reasons, a Software-Defined WAN is divided into multiple domains controlled by multiple controll
In a hybrid PON/xDSL access network, multiple Customer Premise Equipment (CPE) nodes connect over individual Digital Subscriber Lines (DSLs) to a drop-point device. The drop-point device, which is typically reverse powered from the customer, is co-lo
Software Defined Networking (SDN) promises greater flexibility for directing packet flows, and Network Function Virtualization promises to enable dynamic management of software-based network functions. However, the current divide between an intellige