ترغب بنشر مسار تعليمي؟ اضغط هنا

Upstream Polling Protocols for Flow Control in PON/xDSL Hybrid Access Networks

115   0   0.0 ( 0 )
 نشر من قبل Martin Reisslein
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In a hybrid PON/xDSL access network, multiple Customer Premise Equipment (CPE) nodes connect over individual Digital Subscriber Lines (DSLs) to a drop-point device. The drop-point device, which is typically reverse powered from the customer, is co-located with an Optical Network Unit (ONU) of the Passive Optical Network (PON). We demonstrate that the drop-point experiences very high buffer occupancies when no flow control or standard Ethernet PAUSE frame flow control is employed. In order to reduce the buffer occupancies in the drop-point, we introduce two gated flow control protocols that extend the polling-based PON medium access control to the DSL segments between the CPEs and the ONUs. We analyze the timing of the gated flow control mechanisms to specify the latest possible time instant when CPEs can start the DSL upstream transmissions so that the ONU can forward the upstream transmissions at the full PON upstream transmission bit rate. Through extensive simulations for a wide range of bursty traffic models, we find that the gated flow control mechanisms, specifically, the ONU and CPE grant sizing policies, enable effective control of the maximum drop-point buffer occupancies.



قيم البحث

اقرأ أيضاً

The feasibility of practical in-band full-duplex radios has recently been demonstrated experimentally. One way to leverage full-duplex in a network setting is to enable three-node full-duplex, where a full- duplex access point (AP) transmits data to one node yet simultaneously receives data from another node. Such three-node full-duplex communication however introduces inter-client interference, directly impacting the full-duplex gain. It hence may not always be beneficial to enable three-node full-duplex transmissions. In this paper, we present a distributed full-duplex medium access control (MAC) protocol that allows an AP to adaptively switch between full-duplex and half-duplex modes. We formulate a model that determines the probabilities of full-duplex and half-duplex access so as to maximize the expected network throughput. A MAC protocol is further proposed to enable the AP and clients to contend for either full-duplex or half-duplex transmissions based on their assigned probabilities in a distributed way. Our evaluation shows that, by combining the advantages of centralized probabilistic scheduling and distributed random access, our design improves the overall throughput by 2.70x and 1.53x, on average, as compared to half-duplex 802.11 and greedy downlink-uplink client pairing.
In this work, we experimentally assess the transmission of a PDCP-RLC virtualised RAN split interface through a commercial XGS-PON system. We investigate the impacts of DBA on the uplink and packet jitter on the downlink.
We consider a set of flows passing through a set of servers. The injection rate into each flow is governed by a flow control that increases the injection rate when all the servers on the flows path are empty and decreases the injection rate when some server is congested. We show that if each servers congestion is governed by the arriving traffic at the server then the system can *oscillate*. This is in contrast to previous work on flow control where congestion was modeled as a function of the flow injection rates and the system was shown to converge to a steady state that maximizes an overall network utility.
In a radio network with single source-destination pair and some relays, a link between any two nodes is considered to have same or zero path loss. However in practice some links may have considerably high path loss than others but still being useful. In this report, we take into account signals received from these links also. indent Our system model consists of a source-destination pair with two layers of relays in which weaker links between source and second layer and between the first layer and destination are also considered. We propose some protocols in this system model, run simulations under optimum power allocation, and compare these protocols. We show that under reasonable channel strength of these weaker links, the proposed protocols perform ($ approx 2$ dB) better than the existing basic protocol. As expected, the degree of improvement increases with the strength of the weaker links. We also show that with the receive channel knowledge in relays, the reliability and data rate are improved.
Routing plays a fundamental role in network applications, but it is especially challenging in Delay Tolerant Networks (DTNs). These are a kind of mobile ad hoc networks made of e.g. (possibly, unmanned) vehicles and humans where, despite a lack of co ntinuous connectivity, data must be transmitted while the network conditions change due to the nodes mobility. In these contexts, routing is NP-hard and is usually solved by heuristic store and forward replication-based approaches, where multiple copies of the same message are moved and stored across nodes in the hope that at least one will reach its destination. Still, the existing routing protocols produce relatively low delivery probabilities. Here, we genetically improve two routing protocols widely adopted in DTNs, namely Epidemic and PRoPHET, in the attempt to optimize their delivery probability. First, we dissect them into their fundamental components, i.e., functionalities such as checking if a node can transfer data, or sending messages to all connections. Then, we apply Genetic Improvement (GI) to manipulate these components as terminal nodes of evolving trees. We apply this methodology, in silico, to six test cases of urban networks made of hundreds of nodes, and find that GI produces consistent gains in delivery probability in four cases. We then verify if this improvement entails a worsening of other relevant network metrics, such as latency and buffer time. Finally, we compare the logics of the best evolved protocols with those of the baseline protocols, and we discuss the generalizability of the results across test cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا