ﻻ يوجد ملخص باللغة العربية
Software Defined Networking (SDN) promises greater flexibility for directing packet flows, and Network Function Virtualization promises to enable dynamic management of software-based network functions. However, the current divide between an intelligent control plane and an overly simple, stateless data plane results in the inability to exploit the flexibility of a software based network. In this paper we propose SDNFV, a framework that expands the capabilities of network processing-and-forwarding elements to flexibly manage packet flows, while retaining both a high performance data plane and an easily managed control plane. SDNFV proposes a hierarchical control framework where decisions are made across the SDN controller, a host-level manager, and individual VMs to best exploit state available at each level. This increases the networks flexibility compared to existing SDNs where controllers often make decisions solely based on the first packet header of a flow. SDNFV intelligently places network services across hosts and connects them in sequential and parallel chains, giving both the SDN controller and individual network functions the ability to enhance and update flow rules to adapt to changing conditions. Our prototype demonstrates how to efficiently and flexibly reroute flows based on data plane state such as packet payloads and traffic characteristics.
Providing resilient network control is a critical concern for deploying Software-Defined Networking (SDN) into Wide-Area Networks (WANs). For performance reasons, a Software-Defined WAN is divided into multiple domains controlled by multiple controll
Software-defined networking (SDN) provides an agile and programmable way to optimize radio access networks via a control-data plane separation. Nevertheless, reaping the benefits of wireless SDN hinges on making optimal use of the limited wireless fr
Software-defined networking (SDN) is the concept of decoupling the control and data planes to create a flexible and agile network, assisted by a central controller. However, the performance of SDN highly depends on the limitations in the fronthaul wh
In this paper, the problem of vertical handover in software-defined network (SDN) based heterogeneous networks (HetNets) is studied. In the studied model, HetNets are required to offer diverse services for mobile users. Using an SDN controller, HetNe
Based on software-defined principles, we propose a holistic architecture for Cyberphysical Systems (CPS) and Internet of Things (IoT) applications, and highlight the merits pertaining to scalability, flexibility, robustness, interoperability, and cyb