ﻻ يوجد ملخص باللغة العربية
In this paper, we study physical adversarial attacks on object detectors in the wild. Previous works mostly craft instance-dependent perturbations only for rigid or planar objects. To this end, we propose to learn an adversarial pattern to effectively attack all instances belonging to the same object category, referred to as Universal Physical Camouflage Attack (UPC). Concretely, UPC crafts camouflage by jointly fooling the region proposal network, as well as misleading the classifier and the regressor to output errors. In order to make UPC effective for non-rigid or non-planar objects, we introduce a set of transformations for mimicking deformable properties. We additionally impose optimization constraint to make generated patterns look natural to human observers. To fairly evaluate the effectiveness of different physical-world attacks, we present the first standardized virtual database, AttackScenes, which simulates the real 3D world in a controllable and reproducible environment. Extensive experiments suggest the superiority of our proposed UPC compared with existing physical adversarial attackers not only in virtual environments (AttackScenes), but also in real-world physical environments. Code and dataset are available at https://mesunhlf.github.io/index_physical.html.
We propose a universal and physically realizable adversarial attack on a cascaded multi-modal deep learning network (DNN), in the context of self-driving cars. DNNs have achieved high performance in 3D object detection, but they are known to be vulne
Adversarial attacks are feasible in the real world for object detection. However, most of the previous works have tried to learn patches applied to an object to fool detectors, which become less effective or even ineffective in squint view angles. To
In this paper, we propose a natural and robust physical adversarial example attack method targeting object detectors under real-world conditions. The generated adversarial examples are robust to various physical constraints and visually look similar
Deep learning models are vulnerable to adversarial examples. As a more threatening type for practical deep learning systems, physical adversarial examples have received extensive research attention in recent years. However, without exploiting the int
Although deep neural networks (DNNs) have been shown to be susceptible to image-agnostic adversarial attacks on natural image classification problems, the effects of such attacks on DNN-based texture recognition have yet to be explored. As part of ou