ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual Attention Suppression Attack: Generate Adversarial Camouflage in Physical World

212   0   0.0 ( 0 )
 نشر من قبل Jaikai Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning models are vulnerable to adversarial examples. As a more threatening type for practical deep learning systems, physical adversarial examples have received extensive research attention in recent years. However, without exploiting the intrinsic characteristics such as model-agnostic and human-specific patterns, existing works generate weak adversarial perturbations in the physical world, which fall short of attacking across different models and show visually suspicious appearance. Motivated by the viewpoint that attention reflects the intrinsic characteristics of the recognition process, this paper proposes the Dual Attention Suppression (DAS) attack to generate visually-natural physical adversarial camouflages with strong transferability by suppressing both model and human attention. As for attacking, we generate transferable adversarial camouflages by distracting the model-shared similar attention patterns from the target to non-target regions. Meanwhile, based on the fact that human visual attention always focuses on salient items (e.g., suspicious distortions), we evade the human-specific bottom-up attention to generate visually-natural camouflages which are correlated to the scenario context. We conduct extensive experiments in both the digital and physical world for classification and detection tasks on up-to-date models (e.g., Yolo-V5) and significantly demonstrate that our method outperforms state-of-the-art methods.



قيم البحث

اقرأ أيضاً

Physical adversarial attacks in object detection have attracted increasing attention. However, most previous works focus on hiding the objects from the detector by generating an individual adversarial patch, which only covers the planar part of the v ehicles surface and fails to attack the detector in physical scenarios for multi-view, long-distance and partially occluded objects. To bridge the gap between digital attacks and physical attacks, we exploit the full 3D vehicle surface to propose a robust Full-coverage Camouflage Attack (FCA) to fool detectors. Specifically, we first try rendering the non-planar camouflage texture over the full vehicle surface. To mimic the real-world environment conditions, we then introduce a transformation function to transfer the rendered camouflaged vehicle into a photo-realistic scenario. Finally, we design an efficient loss function to optimize the camouflage texture. Experiments show that the full-coverage camouflage attack can not only outperform state-of-the-art methods under various test cases but also generalize to different environments, vehicles, and object detectors.
Real world traffic sign recognition is an important step towards building autonomous vehicles, most of which highly dependent on Deep Neural Networks (DNNs). Recent studies demonstrated that DNNs are surprisingly susceptible to adversarial examples. Many attack methods have been proposed to understand and generate adversarial examples, such as gradient based attack, score based attack, decision based attack, and transfer based attacks. However, most of these algorithms are ineffective in real-world road sign attack, because (1) iteratively learning perturbations for each frame is not realistic for a fast moving car and (2) most optimization algorithms traverse all pixels equally without considering their diverse contribution. To alleviate these problems, this paper proposes the targeted attention attack (TAA) method for real world road sign attack. Specifically, we have made the following contributions: (1) we leverage the soft attention map to highlight those important pixels and skip those zero-contributed areas - this also helps to generate natural perturbations, (2) we design an efficient universal attack that optimizes a single perturbation/noise based on a set of training images under the guidance of the pre-trained attention map, (3) we design a simple objective function that can be easily optimized, (4) we evaluate the effectiveness of TAA on real world data sets. Experimental results validate that the TAA method improves the attack successful rate (nearly 10%) and reduces the perturbation loss (about a quarter) compared with the popular RP2 method. Additionally, our TAA also provides good properties, e.g., transferability and generalization capability. We provide code and data to ensure the reproducibility: https://github.com/AdvAttack/RoadSignAttack.
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of infected models will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Currently, most exist ing backdoor attacks adopted the setting of static trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area. In this paper, we revisit this attack paradigm by analyzing trigger characteristics. We demonstrate that this attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training. As such, those attacks are far less effective in the physical world, where the location and appearance of the trigger in the digitized image may be different from that of the one used for training. Moreover, we also discuss how to alleviate such vulnerability. We hope that this work could inspire more explorations on backdoor properties, to help the design of more advanced backdoor attack and defense methods.
Though it is well known that the performance of deep neural networks (DNNs) degrades under certain light conditions, there exists no study on the threats of light beams emitted from some physical source as adversarial attacker on DNNs in a real-world scenario. In this work, we show by simply using a laser beam that DNNs are easily fooled. To this end, we propose a novel attack method called Adversarial Laser Beam ($AdvLB$), which enables manipulation of laser beams physical parameters to perform adversarial attack. Experiments demonstrate the effectiveness of our proposed approach in both digital- and physical-settings. We further empirically analyze the evaluation results and reveal that the proposed laser beam attack may lead to some interesting prediction errors of the state-of-the-art DNNs. We envisage that the proposed $AdvLB$ method enriches the current family of adversarial attacks and builds the foundation for future robustness studies for light.
Face recognition (FR) systems have been widely applied in safety-critical fields with the introduction of deep learning. However, the existence of adversarial examples brings potential security risks to FR systems. To identify their vulnerability and help improve their robustness, in this paper, we propose Meaningful Adversarial Stickers, a physically feasible and easily implemented attack method by using meaningful real stickers existing in our life, where the attackers manipulate the pasting parameters of stickers on the face, instead of designing perturbation patterns and then printing them like most existing works. We conduct attacks in the black-box setting with limited information which is more challenging and practical. To effectively solve the pasting position, rotation angle, and other parameters of the stickers, we design Region based Heuristic Differential Algorithm, which utilizes the inbreeding strategy based on regional aggregation of effective solutions and the adaptive adjustment strategy of evaluation criteria. Extensive experiments are conducted on two public datasets including LFW and CelebA with respective to three representative FR models like FaceNet, SphereFace, and CosFace, achieving attack success rates of 81.78%, 72.93%, and 79.26% respectively with only hundreds of queries. The results in the physical world confirm the effectiveness of our method in complex physical conditions. When continuously changing the face posture of testers, the method can still perform successful attacks up to 98.46%, 91.30% and 86.96% in the time series.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا