ترغب بنشر مسار تعليمي؟ اضغط هنا

Nb$_{2}$SiTe$_{4}$: A Stable Narrow-Gap Two-Dimensional Material with Ambipolar Transport and Mid-Infrared Response

53   0   0.0 ( 0 )
 نشر من قبل Jiamin Xue
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) materials with narrow band gaps (~0.3 eV) are of great importance for realizing ambipolar transistors and mid-infrared (MIR) detection. However, most of the 2D materials studied so far have band gaps that are too large. A few of them with suitable band gaps are not stable under ambient conditions. In this study, the layered Nb$_{2}$SiTe$_{4}$ is shown to be a stable 2D material with a band gap of 0.39 eV. Field-effect transistors based on few-layer Nb$_2$SiTe$_4$ show ambipolar transport with similar magnitude of electron and hole current and high charge-carrier mobility of ~ 100 cm$^{2}$V$^{-1}$s$^{-1}$ at room temperature. Optoelectronic measurements of the devices show clear response to MIR wavelength of 3.1 $mathrmmu$m with a high responsivity of ~ 0.66 AW$^{-1}$. These results establish Nb$_{2}$SiTe$_{4}$ as a good candidate for ambipolar devices and MIR detection.



قيم البحث

اقرأ أيضاً

By means of ab initio calculations we investigate the possibility of existence of a boron nitride (BN) porous two-dimensional nanosheet which is geometrically similar to the carbon allotrope known as biphenylene carbon. The proposed structure, which we called Inorganic Graphenylene (IGP), is formed spontaneously after selective dehydrogenation of the porous Boron Nitride (BN) structure proposed by Ding et al. We study the structural and electronic properties of both porous BN and IGP and it is shown that, by selective substitution of B and N atoms with carbon atoms in these structures, the band gap can be significantly reduced, changing their behavior from insulators to semiconductors, thus opening the possibility of band gap engineering for this class of two-dimensional materials.
We fabricated NiFe$_textrm{2}$O$_textrm{x}$ thin films on MgAl$_2$O$_4$(001) substrates by reactive dc magnetron co-sputtering varying the oxygen partial pressure during deposition. The fabrication of a variable material with oxygen deficiency leads to controllable electrical and optical properties which would be beneficial for the investigations of the transport phenomena and would, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques in order to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity measurements we obtained the conduction mechanisms that govern the systems in high and low temperature regimes, extracting low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. Hall effect measurements showed the mixed-type semiconducting character of our films. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energy, with lower band gap values in the less oxidized samples.
Light-matter interaction with two-dimensional materials gained significant attention in recent years leading to the reporting of weak and strong coupling regimes, and effective nano-laser operation with various structures. Particularly, future applic ations involving monolayer materials in waveguide-coupled on-chip integrated circuitry and valleytronic nanophotonics require controlling, directing and optimizing photoluminescence. In this context, photoluminescence enhancement from monolayer transition-metal dichalcogenides on patterned semiconducting substrates becomes attractive. It is demonstrated in our work using focussed-ion-beam-etched GaP and monolayer WS2 suspended on hexagonal-BN buffer sheets. We present a unique optical microcavity approach capable of both efficient in-plane and out-of-plane confinement of light, which results in a WS2 photoluminescence enhancement by a factor of 10 compared to the unstructured substrate at room temperature. The key concept is the combination of interference effects in both the horizontal direction using a bulls-eye-shaped circular Bragg grating and in vertical direction by means of a multiple reflection model with optimized etch depth of circular air-GaP structures for maximum constructive interference effects of the applied pump and expected emission light.
241 - L. Mogg , S. Zhang , G.-P. Hao 2019
Defect-free monolayers of graphene and hexagonal boron nitride were previously shown to be surprisingly permeable to thermal protons, despite being completely impenetrable to all gases. It remains untested whether small ions can permeate through the two-dimensional crystals. Here we show that mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selectivity such that only protons can permeate through, with no detectable flow of counterions. In the experiments, we used suspended monolayers that had few if any atomic-scale defects, as shown by gas permeation tests, and placed them to separate reservoirs filled with hydrochloric acid solutions. Protons accounted for all the electrical current and chloride ions were blocked. This result corroborates the previous conclusion that thermal protons can pierce defect-free two-dimensional crystals. Besides importance for theoretical developments, our results are also of interest for research on various separation technologies based on two-dimensional materials.
Atomically thin, two-dimensional (2D) indium selenide (InSe) has attracted considerable attention due to large tunability in the band gap (from 1.4 to 2.6 eV) and high carrier mobility. The intriguingly high dependence of band gap on layer thickness may lead to novel device applications, although its origin remains poorly understood, and generally attributed to quantum confinement effect. In this work, we demonstrate via first-principles calculations that strong interlayer coupling may be mainly responsible for this phenomenon, especially in the fewer-layer region, and it could also be an essential factor influencing other material properties of {beta}-InSe and {gamma}-InSe. Existence of strong interlayer coupling manifests itself in three aspects: (i) indirect-to-direct band gap transitions with increasing layer thickness; (ii) fan-like frequency diagrams of the shear and breathing modes of few-layer flakes; (iii) strong layer-dependent carrier mobilities. Our results indicate that multiple-layer InSe may be deserving of attention from FET-based technologies and also an ideal system to study interlayer coupling, possibly inherent in other 2D materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا