ﻻ يوجد ملخص باللغة العربية
Defect-free monolayers of graphene and hexagonal boron nitride were previously shown to be surprisingly permeable to thermal protons, despite being completely impenetrable to all gases. It remains untested whether small ions can permeate through the two-dimensional crystals. Here we show that mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selectivity such that only protons can permeate through, with no detectable flow of counterions. In the experiments, we used suspended monolayers that had few if any atomic-scale defects, as shown by gas permeation tests, and placed them to separate reservoirs filled with hydrochloric acid solutions. Protons accounted for all the electrical current and chloride ions were blocked. This result corroborates the previous conclusion that thermal protons can pierce defect-free two-dimensional crystals. Besides importance for theoretical developments, our results are also of interest for research on various separation technologies based on two-dimensional materials.
Proton radiation damage is an important failure mechanism for electronic devices in near-Earth orbits, deep space and high energy physics facilities. Protons can cause ionizing damage and atomic displacements, resulting in device degradation and malf
Measuring heat flow through nanoscale systems poses formidable practical difficulties as there is no `ampere meter for heat. We propose to overcome this problem by realizing heat transport through a chain of trapped ions. Laser cooling the chain edge
Electrical generation of polarized spins in nonmagnetic materials is of great interest for the underlying physics and device potential. One such mechanism is chirality-induced spin selectivity (CISS), with which structural chirality leads to differen
Two-dimensional (2D) materials with narrow band gaps (~0.3 eV) are of great importance for realizing ambipolar transistors and mid-infrared (MIR) detection. However, most of the 2D materials studied so far have band gaps that are too large. A few of
While digital electronics has become entirely ubiquitous in todays world and appears in the limelight, analogue electronics is still playing a crucial role in many devices and applications. Current analogue circuits are mostly manufactured using sili