ترغب بنشر مسار تعليمي؟ اضغط هنا

Inorganic Graphenylene: A Porous Two-Dimensional Material With Tunable Band Gap

196   0   0.0 ( 0 )
 نشر من قبل Eric Perim Martins
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of ab initio calculations we investigate the possibility of existence of a boron nitride (BN) porous two-dimensional nanosheet which is geometrically similar to the carbon allotrope known as biphenylene carbon. The proposed structure, which we called Inorganic Graphenylene (IGP), is formed spontaneously after selective dehydrogenation of the porous Boron Nitride (BN) structure proposed by Ding et al. We study the structural and electronic properties of both porous BN and IGP and it is shown that, by selective substitution of B and N atoms with carbon atoms in these structures, the band gap can be significantly reduced, changing their behavior from insulators to semiconductors, thus opening the possibility of band gap engineering for this class of two-dimensional materials.



قيم البحث

اقرأ أيضاً

Crystal phase is well studied and presents a periodical atom arrangement in three dimensions lattice, but the amorphous phase is poorly understood. Here, by starting from cage-like bicyclocalix[2]arene[2]triazines building block, a brand-new 2D MOF i s constructed with extremely weak interlaminar interaction existing between two adjacent 2D-crystal layer. Inter-layer slip happens under external disturbance and leads to the loss of periodicity at one dimension in the crystal lattice, resulting in an interim phase between the crystal and amorphous phase - the chaos phase, non-periodical in microscopic scale but orderly in mesoscopic scale. This chaos phase 2D MOF is a disordered self-assembly of black-phosphorus like 3D-layer, which has excellent mechanical-strength and a thickness of 1.15 nm. The bulky 2D-MOF material is readily to be exfoliated into monolayer nanosheets in gram-scale with unprecedented evenness and homogeneity, as well as previously unattained lateral size (>10 um), which present the first mass-producible monolayer 2D material and can form wafer-scale film on substrate.
Atomically thin, two-dimensional (2D) indium selenide (InSe) has attracted considerable attention due to large tunability in the band gap (from 1.4 to 2.6 eV) and high carrier mobility. The intriguingly high dependence of band gap on layer thickness may lead to novel device applications, although its origin remains poorly understood, and generally attributed to quantum confinement effect. In this work, we demonstrate via first-principles calculations that strong interlayer coupling may be mainly responsible for this phenomenon, especially in the fewer-layer region, and it could also be an essential factor influencing other material properties of {beta}-InSe and {gamma}-InSe. Existence of strong interlayer coupling manifests itself in three aspects: (i) indirect-to-direct band gap transitions with increasing layer thickness; (ii) fan-like frequency diagrams of the shear and breathing modes of few-layer flakes; (iii) strong layer-dependent carrier mobilities. Our results indicate that multiple-layer InSe may be deserving of attention from FET-based technologies and also an ideal system to study interlayer coupling, possibly inherent in other 2D materials.
Graphene is considered one of the most promising materials for future electronic. However, in its pristine form graphene is a gapless material, which imposes limitations to its use in some electronic applications. In order to solve this problem many approaches have been tried, such as, physical and chemical functionalizations. These processes compromise some of the desirable graphene properties. In this work, based on ab initio quantum molecular dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene carbon (BPC) can be obtained from selective dehydrogenation of porous graphene. BPC presents a nonzero bandgap and well-delocalized frontier orbitals. Synthetic routes to BPC are also addressed.
The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nanoelectronic devices. Since the first isolation of graphene, a Dirac material , a large family of new functional 2D materials have been discovered and characterized, including insulating 2D boron nitride, semiconducting 2D transition metal dichalcogenides and black phosphorus, and superconducting 2D bismuth strontium calcium copper oxide, molybdenum disulphide and niobium selenide, etc. Here, we report the identification of ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few nanometers, which provides a very important piece to the van der Waals structures consisting of various 2D materials. We further demonstrate the giant modulation of the channel resistance of 2D CGT devices via electric field effect. Our results illustrate the gate voltage tunability of 2D CGT and the potential of CGT, a ferromagnetic 2D material, as a new functional quantum material for applications in future nanoelectronics and spintronics.
The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material itself, or by environmental screening from the surrounding medium. The physical proper ties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and inter-layer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS$_2$ on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS$_2$ layer. Following optical excitation, the band gap is reduced by up to $sim!$400 meV on femtosecond timescales due to a persistence of strong electronic interactions despite the environmental screening by the $n$-doped graphene. This points to a large degree of tuneability of both the electronic structure and electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا