ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic perturbations and fisheries management

72   0   0.0 ( 0 )
 نشر من قبل Patrice Loisel
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Patrice Loisel




اسأل ChatGPT حول البحث

As most natural resources, fisheries are affected by random disturbances. The evolution of such resources may be modelled by a succession of deterministic process and random perturbations on biomass and/or growth rate at random times. We analyze the impact of the characteristics of the perturbations on the management of natural resources. We highlight the importance of using a dynamic programming approach in order to completely characterize the optimal solution, we also present the properties of the controlled model and give the behavior of the optimal harvest for specific jump kernels.



قيم البحث

اقرأ أيضاً

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of computing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro procedure based on Rockaffelar-Uryasevs identity for the CVaR. The convergence rate of this algorithm to its target satisfies a Gaussian Central Limit Theorem. As a second step, in order to speed up the initial procedure, we propose a recursive importance sampling (I.S.) procedure which induces a significant variance reduction of both VaR and CVaR procedures. This idea, which goes back to the seminal paper of B. Arouna, follows a new approach introduced by V. Lemaire and G. Pag`es. Finally, we consider a deterministic moving risk level to speed up the initialization phase of the algorithm. We prove that the convergence rate of the resulting procedure is ruled by a Central Limit Theorem with minimal variance and its efficiency is illustrated by considering several typical energy portfolios.
79 - Silvana Pesenti , Qiuqi Wang , 2020
Optimization of distortion riskmetrics with distributional uncertainty has wide applications in finance and operations research. Distortion riskmetrics include many commonly applied risk measures and deviation measures, which are not necessarily mono tone or convex. One of our central findings is a unifying result that allows us to convert an optimization of a non-convex distortion riskmetric with distributional uncertainty to a convex one, leading to great tractability. The key to the unifying equivalence result is the novel notion of closedness under concentration of sets of distributions. Our results include many special cases that are well studied in the optimization literature, including but not limited to optimizing probabilities, Value-at-Risk, Expected Shortfall, and Yaaris dual utility under various forms of distributional uncertainty. We illustrate our theoretical results via applications to portfolio optimization, optimization under moment constraints, and preference robust optimization.
Optimized certainty equivalents (OCEs) is a family of risk measures widely used by both practitioners and academics. This is mostly due to its tractability and the fact that it encompasses important examples, including entropic risk measures and aver age value at risk. In this work we consider stochastic optimal control problems where the objective criterion is given by an OCE risk measure, or put in other words, a risk minimization problem for controlled diffusions. A major difficulty arises since OCEs are often time inconsistent. Nevertheless, via an enlargement of state space we achieve a substitute of sorts for time consistency in fair generality. This allows us to derive a dynamic programming principle and thus recover central results of (risk-neutral) stochastic control theory. In particular, we show that the value of our risk minimization problem can be characterized via the viscosity solution of a Hamilton--Jacobi--Bellman--Issacs equation. We further establish the uniqueness of the latter under suitable technical conditions.
We study a stochastic game where one player tries to find a strategy such that the state process reaches a target of controlled-loss-type, no matter which action is chosen by the other player. We provide, in a general setup, a relaxed geometric dynam ic programming principle for this problem and derive, for the case of a controlled SDE, the corresponding dynamic programming equation in the sense of viscosity solutions. As an example, we consider a problem of partial hedging under Knightian uncertainty.
We consider a strictly convex billiard table with $C^2$ boundary, with the dynamics subjected to random perturbations. Each time the billiard ball hits the boundary its reflection angle has a random perturbation. The perturbation distribution corresp onds to the physical situation where either the scale of the surface irregularities is smaller than but comparable to the diameter of the reflected object, or the billiard ball is not perfectly rigid. We prove that for a large class of such perturbations the resulting Markov chain is uniformly ergodic, although this is not true in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا