ﻻ يوجد ملخص باللغة العربية
We consider a strictly convex billiard table with $C^2$ boundary, with the dynamics subjected to random perturbations. Each time the billiard ball hits the boundary its reflection angle has a random perturbation. The perturbation distribution corresponds to the physical situation where either the scale of the surface irregularities is smaller than but comparable to the diameter of the reflected object, or the billiard ball is not perfectly rigid. We prove that for a large class of such perturbations the resulting Markov chain is uniformly ergodic, although this is not true in general.
Consider billiard dynamics in a strictly convex domain, and consider a trajectory that begins with the velocity vector making a small positive angle with the boundary. Lazutkin proved that in two dimensions, it is impossible for this angle to tend to
As most natural resources, fisheries are affected by random disturbances. The evolution of such resources may be modelled by a succession of deterministic process and random perturbations on biomass and/or growth rate at random times. We analyze the
We present a new stochastic framework for studying ship capsize. It is a synthesis of two strands of transition state theory. The first is an extension of deterministic transition state theory to dissipative non-autonomous systems, together with a pr
In this paper, stochastic inertial manifold for damped wave equations subjected to additive white noise is constructed by the Lyapunov-Perron method. It is proved that when the intensity of noise tends to zero the stochastic inertial manifold converges to its deterministic counterpart almost surely.
In this note we prove that a fractional stochastic delay differential equation which satisfies natural regularity conditions generates a continuous random dynamical system on a subspace of a Holder space which is separable.