ترغب بنشر مسار تعليمي؟ اضغط هنا

Computation of VaR and CVaR using stochastic approximations and unconstrained importance sampling

243   0   0.0 ( 0 )
 نشر من قبل Noufel Frikha
 تاريخ النشر 2010
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of computing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro procedure based on Rockaffelar-Uryasevs identity for the CVaR. The convergence rate of this algorithm to its target satisfies a Gaussian Central Limit Theorem. As a second step, in order to speed up the initial procedure, we propose a recursive importance sampling (I.S.) procedure which induces a significant variance reduction of both VaR and CVaR procedures. This idea, which goes back to the seminal paper of B. Arouna, follows a new approach introduced by V. Lemaire and G. Pag`es. Finally, we consider a deterministic moving risk level to speed up the initialization phase of the algorithm. We prove that the convergence rate of the resulting procedure is ruled by a Central Limit Theorem with minimal variance and its efficiency is illustrated by considering several typical energy portfolios.



قيم البحث

اقرأ أيضاً

155 - William T. Shaw 2011
We show how to reduce the problem of computing VaR and CVaR with Student T return distributions to evaluation of analytical functions of the moments. This allows an analysis of the risk properties of systems to be carefully attributed between choices of risk function (e.g. VaR vs CVaR); choice of return distribution (power law tail vs Gaussian) and choice of event frequency, for risk assessment. We exploit this to provide a simple method for portfolio optimization when the asset returns follow a standard multivariate T distribution. This may be used as a semi-analytical verification tool for more general optimizers, and for practical assessment of the impact of fat tails on asset allocation for shorter time horizons.
196 - Benjamin Virrion 2020
We present a generic path-dependent importance sampling algorithm where the Girsanov induced change of probability on the path space is represented by a sequence of neural networks taking the past of the trajectory as an input. At each learning step, the neural networks parameters are trained so as to reduce the variance of the Monte Carlo estimator induced by this change of measure. This allows for a generic path dependent change of measure which can be used to reduce the variance of any path-dependent financial payoff. We show in our numerical experiments that for payoffs consisting of either a call, an asymmetric combination of calls and puts, a symmetric combination of calls and puts, a multi coupon autocall or a single coupon autocall, we are able to reduce the variance of the Monte Carlo estimators by factors between 2 and 9. The numerical experiments also show that the method is very robust to changes in the parameter values, which means that in practice, the training can be done offline and only updated on a weekly basis.
Modelling joint dynamics of liquid vanilla options is crucial for arbitrage-free pricing of illiquid derivatives and managing risks of option trade books. This paper develops a nonparametric model for the European options book respecting underlying f inancial constraints and while being practically implementable. We derive a state space for prices which are free from static (or model-independent) arbitrage and study the inference problem where a model is learnt from discrete time series data of stock and option prices. We use neural networks as function approximators for the drift and diffusion of the modelled SDE system, and impose constraints on the neural nets such that no-arbitrage conditions are preserved. In particular, we give methods to calibrate textit{neural SDE} models which are guaranteed to satisfy a set of linear inequalities. We validate our approach with numerical experiments using data generated from a Heston stochastic local volatility model.
71 - Patrice Loisel 2019
As most natural resources, fisheries are affected by random disturbances. The evolution of such resources may be modelled by a succession of deterministic process and random perturbations on biomass and/or growth rate at random times. We analyze the impact of the characteristics of the perturbations on the management of natural resources. We highlight the importance of using a dynamic programming approach in order to completely characterize the optimal solution, we also present the properties of the controlled model and give the behavior of the optimal harvest for specific jump kernels.
229 - Benjamin Jourdain 2010
Taking advantage of the recent litterature on exact simulation algorithms (Beskos, Papaspiliopoulos and Roberts) and unbiased estimation of the expectation of certain fonctional integrals (Wagner, Beskos et al. and Fearnhead et al.), we apply an exac t simulation based technique for pricing continuous arithmetic average Asian options in the Black and Scholes framework. Unlike existing Monte Carlo methods, we are no longer prone to the discretization bias resulting from the approximation of continuous time processes through discrete sampling. Numerical results of simulation studies are presented and variance reduction problems are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا