ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasars Have Fewer Close Companions than Normal Galaxies

65   0   0.0 ( 0 )
 نشر من قبل Minghao Yue
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the distribution of companion galaxies around quasars using {em Hubble Space Telescope} ({em HST}) Advanced Camera for Surveys Wide Field Camera (ACS/WFC) archival images. Our master sample contains 532 quasars which have been observed by {em HST} ACS/WFC, spanning a wide range of luminosity $(-31<M_i(z=2)<-23)$ and redshift ($0.3<z<3$). We search for companions around the quasars with projected distance of $10text{ kpc}<d<100text{ kpc}$. PSF subtraction is performed to enhance the completeness for close companions. The completeness is estimated to be high $(>90%)$ even for the faintest companions of interest. The number of physical companions is estimated by subtracting a background density from the number density of projected companions. We divide all the companions into three groups (faint, intermediate and bright) according to their fluxes. A control sample of galaxies is constructed to have similar redshift distribution and stellar mass range as the quasar sample using the data from {em HST} deep fields. We find that quasars and control sample galaxies have similar numbers of faint and bright companions, while quasars show a $3.7sigma$ deficit of intermediate companions compared to galaxies. The numbers of companions in all three groups do not show strong evolution with redshift, and the number of intermediate companions around quasars decreases with quasar luminosity. Assuming that merger-triggered quasars have entered the final coalescence stage during which individual companions are no longer detectable at large separations, our result is consistent with a picture in which a significant fraction of quasars is triggered by mergers.



قيم البحث

اقرأ أيضاً

Massive quiescent compact galaxies have been discovered at high redshifts, associated with rapid compaction and cessation of star formation (SF). In this work we set out to quantify the time-scales in which SF is quenched in compact galaxies at inter mediate redshifts. For this, we select a sample of green valley galaxies within the COSMOS field in the midst of quenching their SF at $0.5<z<1.0$ that exhibit varying degrees of compactness. Based on the H$delta$ absorption line and the 4000 AA break of coadded zCOSMOS spectra for sub-samples of normal-sized and compact galaxies we determine quenching time-scales as a function of compactness. We find that the SF quenching time-scales in green valley compact galaxies are much shorter than in normal-sized ones. In an effort to understand this trend, we use the Illustris simulation to trace the evolution of the SF history, the growth rate of the central super massive black hole (SMBH) {bf and the AGN-feedback in compact and normal-sized galaxies. We find that the key difference between their SF quenching time-scales is linked to the mode of the AGN-feedback. In the compact galaxies predominates the kinematic-mode, which is highly efficient at quenching the SF by depleting the internal gas. On the normal-sized galaxies, the prevailing thermal-mode injects energy in the circumgalactic gas, impeding the cold gas supply and quenching the SF via the slower strangulation mechanism.} These results are consistent with the violent disk instability and gas-rich mergers scenarios, followed by strong AGN and stellar feedback. Although this kind of event is most expected to occur at $z=2-3$, we find evidences that the formation of compact quiescent galaxies can occur at $z<1$.
Using the TNG100 (100 Mpc)^3 simulation of the IllustrisTNG project, we demonstrate a strong connection between the onset of star formation quenching and the stellar size of galaxies. We do so by tracking the evolutionary history of extended and norm al-size galaxies selected at z=2 with log(M_star) = 10.2 - 11 and stellar-half-mass-radii above and within 1-sigma of the stellar size--stellar mass relation, respectively. We match the stellar mass and star formation rate distributions of the two populations. By z=1, only 36% of the extended massive galaxies have quenched, in contrast to a quenched fraction of 69% for the normal-size massive galaxies. We find that normal-size massive galaxies build up their central stellar mass without a significant increase in their stellar size between z=2-4, whereas the stellar size of the extended massive galaxies almost doubles in the same time. In IllustrisTNG, lower black hole masses and weaker kinetic-mode feedback appears to be responsible for the delayed quenching of star formation in the extended massive galaxies. We show that relatively gas-poor mergers may be responsible for the lower central stellar density and weaker supermassive black hole feedback in the extended massive galaxies.
The UV/optical variation, likely driven by accretion disc turbulence, is a defining characteristic of type 1 active galactic nuclei (AGNs) and quasars. In this work we investigate an interesting consequence of such turbulence using quasars in SDSS St ripe 82 for which the measurements of the UV/optical variability amplitude are available from $sim$ 10 years long light curves. We discover positive correlations between UV/optical variability amplitude $sigma_{rms}$ and equivalent widths of CIV, Mg II and [OIII]5007 emission lines. Such correlations remain statistically robust through partial correlation analyses, i.e., after controlling the effects of other variables including bolometric luminosity, central supermassive black hole mass, Eddington ratio and redshift. This, for the first time, indicates a causal link between disc turbulence and emission line production. We propose two potential underlying mechanisms both of which may be involved: 1) quasars with stronger disc turbulence have on average bluer/harder broadband SED, an expected effect of the disc thermal fluctuation model; 2) stronger disc turbulence could lead to launch of emission line regions with larger covering factors.
Multiplicity is a fundamental property that is set early during stellar lifetimes, and it is a stringent probe of the physics of star formation. The distribution of close companions around young stars is still poorly constrained by observations. We p resent an analysis of stellar multiplicity derived from APOGEE-2 spectra obtained in targeted observations of nearby star-forming regions. This is the largest homogeneously observed sample of high-resolution spectra of young stars. We developed an autonomous method to identify double lined spectroscopic binaries (SB2s). Out of 5007 sources spanning the mass range of $sim$0.05--1.5 msun, we find 399 binaries, including both RV variables and SB2s. The mass ratio distribution of SB2s is consistent with a uniform for $q<0.95$ with an excess of twins with $q>0.95$. The period distribution is consistent with what has been observed in close binaries ($<10$ AU) in the evolved populations. Three systems are found to have $qsim$0.1, with a companion located within the brown dwarf desert. There are not any strong trends in the multiplicity fraction (MF) as a function of cluster age from 1 to 100 Myr. There is a weak dependence on stellar density, with companions being most numerous at $Sigma_*sim30$ stars/pc$^{-2}$, and decreasing in more diffuse regions. Finally, disk-bearing sources are deficient in SB2s (but not RV variables) by a factor of $sim$2; this deficit is recovered by the systems without disks. This may indicate a quick dispersal of disk material in short-period equal mass systems that is less effective in binaries with lower $q$.
81 - Chris Simpson 2003
Surveys to find high-redshift radio galaxies deliberately exclude optically-bright objects, which may be distant radio-loud quasars. In order to properly determine the space density of supermassive black holes, the fraction of such objects missed mus t be determined within a quantitative framework for AGN unification. I briefly describe the receding torus model, which predicts that quasars should have more luminous ionizing continua than radio galaxies of similar radio luminosity, and present evidence to support it. I also suggest two further tests of the model which should constrain some of its parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا