ترغب بنشر مسار تعليمي؟ اضغط هنا

Close companions around young stars

127   0   0.0 ( 0 )
 نشر من قبل Marina Kounkel A
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiplicity is a fundamental property that is set early during stellar lifetimes, and it is a stringent probe of the physics of star formation. The distribution of close companions around young stars is still poorly constrained by observations. We present an analysis of stellar multiplicity derived from APOGEE-2 spectra obtained in targeted observations of nearby star-forming regions. This is the largest homogeneously observed sample of high-resolution spectra of young stars. We developed an autonomous method to identify double lined spectroscopic binaries (SB2s). Out of 5007 sources spanning the mass range of $sim$0.05--1.5 msun, we find 399 binaries, including both RV variables and SB2s. The mass ratio distribution of SB2s is consistent with a uniform for $q<0.95$ with an excess of twins with $q>0.95$. The period distribution is consistent with what has been observed in close binaries ($<10$ AU) in the evolved populations. Three systems are found to have $qsim$0.1, with a companion located within the brown dwarf desert. There are not any strong trends in the multiplicity fraction (MF) as a function of cluster age from 1 to 100 Myr. There is a weak dependence on stellar density, with companions being most numerous at $Sigma_*sim30$ stars/pc$^{-2}$, and decreasing in more diffuse regions. Finally, disk-bearing sources are deficient in SB2s (but not RV variables) by a factor of $sim$2; this deficit is recovered by the systems without disks. This may indicate a quick dispersal of disk material in short-period equal mass systems that is less effective in binaries with lower $q$.



قيم البحث

اقرأ أيضاً

174 - A. Brucalassi 2014
For the past six years we have carried out a search for massive planets around main sequence and evolved stars in the open cluster (OC) M67, using radial velocity (RV) measurements obtained with HARPS at ESO (La Silla), SOPHIE at OHP and HRS at HET. Additional RV data come from CORALIE at the Euler Swiss Telescope. We aim to perform a long-term study on giant planet formation in open clusters and determine how it depends on stellar mass and chemical composition. We report the detection of three new extrasolar planets: two in orbit around the two G dwarfs YBP1194 and YBP1514, and one around the evolved star S364. The orbital solution for YBP1194 yields a period of 6.9 days, an eccentricity of 0.24, and a minimum mass of 0.34 Mj. YBP1514 shows periodic RV variations of 5.1 days, a minimum mass of 0.40 Mj, and an eccentricity of 0.39. The best Keplerian solution for S364 yields a period of 121.7 days, an eccentricity of 0.35 and a minimum mass of 1.54 Mj. An analysis of H_alpha core flux measurements as well as of the line bisectors spans revealed no correlation with the RV periods, indicating that the RV variations are best explained by the presence of a planetary companion. Remarkably, YBP1194 is one of the best solar twins identified so far, and YBP1194b is the first planet found around a solar twin that belongs to a stellar cluster. In contrast with early reports and in agreement with recent findings, our results show that massive planets around stars of open clusters are as frequent as those around field stars.
439 - C. Tapia , S. Lizano 2017
We calculate the emission of protoplanetary disks threaded by a poloidal magnetic field and irradiated by the central star. The radial structure of these disks was studied by Shu and collaborators and the vertical structure was studied by Lizano and collaborators. We consider disks around low mass protostars, T Tauri stars, and FU Ori stars with different mass-to-flux ratios $lambda_{rm sys}$. We calculate the spectral energy distribution and the antenna temperature profiles at 1 mm and 7 mm convolved with the ALMA and VLA beams. We find that disks with weaker magnetization (high values of $lambda_{rm sys}$) emit more than disks with stronger magnetization (low values of $lambda_{rm sys}$). This happens because the former are denser, hotter and have larger aspect ratios, receiving more irradiation from the central star. The level of magnetization also affects the optical depth at millimeter wavelengths, being larger for disks with high $lambda_{rm sys}$. In general, disks around low mass protostars and T Tauri stars are optically thin at 7 mm while disks around FU Ori are optically thick. A qualitative comparison of the emission of these magnetized disks, including heating by an external envelope, with the observed millimeter antenna temperature profiles of HL Tau indicates that large cm grains are required to increase the optical depth and reproduce the observed 7 mm emission at large radii.
296 - Duy Cuong Nguyen 2011
We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial ve locity precision of ~80 m/s with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on radial velocity variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Cha I (7%) and Tau-Aur (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient radial velocity precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.
A total of 28 young nearby stars (ages $leq 60$,Myr) have been observed in the K$_{rm s}$-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion-candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed.
Many problems in contemporary astrophysics---from understanding the formation of black holes to untangling the chemical evolution of galaxies---rely on knowledge about binary stars. This, in turn, depends on discovery and characterization of binary c ompanions for large numbers of different kinds of stars in different chemical and dynamical environments. Current stellar spectroscopic surveys observe hundreds of thousands to millions of stars with (typically) few observational epochs, which allows binary discovery but makes orbital characterization challenging. We use a custom Monte Carlo sampler (The Joker) to perform discovery and characterization of binary systems through radial-velocities, in the regime of sparse, noisy, and poorly sampled multi-epoch data. We use it to generate posterior samplings in Keplerian parameters for 232,531 sources released in APOGEE Data Release 16. Our final catalog contains 19,635 high-confidence close-binary (P < few years, a < few AU) systems that show interesting relationships between binary occurrence rate and location in the color-magnitude diagram. We find notable faint companions at high masses (black-hole candidates), at low masses (substellar candidates), and at very close separations (mass-transfer candidates). We also use the posterior samplings in a (toy) hierarchical inference to measure the long-period binary-star eccentricity distribution. We release the full set of posterior samplings for the entire parent sample of 232,531 stars. This set of samplings involves no heuristic discovery threshold and therefore can be used for myriad statistical purposes, including hierarchical inferences about binary-star populations and sub-threshold searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا