ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasars are more luminous than radio galaxies - so what?

82   0   0.0 ( 0 )
 نشر من قبل Chris Simpson
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chris Simpson




اسأل ChatGPT حول البحث

Surveys to find high-redshift radio galaxies deliberately exclude optically-bright objects, which may be distant radio-loud quasars. In order to properly determine the space density of supermassive black holes, the fraction of such objects missed must be determined within a quantitative framework for AGN unification. I briefly describe the receding torus model, which predicts that quasars should have more luminous ionizing continua than radio galaxies of similar radio luminosity, and present evidence to support it. I also suggest two further tests of the model which should constrain some of its parameters.



قيم البحث

اقرأ أيضاً

We report the discovery of two new giant radio galaxies (GRGs) using the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey. Both GRGs were found within a 1 deg^2 region inside the COSMOS field. They have redshifts of z=0.165 6 and z=0.3363 and physical sizes of 2.4Mpc and 2.0Mpc, respectively. Only the cores of these GRGs were clearly visible in previous high resolution VLA observations, since the diffuse emission of the lobes was resolved out. However, the excellent sensitivity and uv coverage of the new MeerKAT telescope allowed this diffuse emission to be detected. The GRGs occupy a unpopulated region of radio power - size parameter space. Based on a recent estimate of the GRG number density, the probability of finding two or more GRGs with such large sizes at z<0.4 in a ~1deg^2 field is only 2.7x10^-6, assuming Poisson statistics. This supports the hypothesis that the prevalence of GRGs has been significantly underestimated in the past due to limited sensitivity to low surface brightness emission. The two GRGs presented here may be the first of a new population to be revealed through surveys like MIGHTEE which provide exquisite sensitivity to diffuse, extended emission.
471 - D.J. Pisano 2007
Luminous Compact Blue Galaxies (LCBGs) are common at z~1, contributing significantly to the total star formation rate density. By z~0, they are a factor of ten rarer. While we know that LCBGs evolve rapidly, we do not know what drives their evolution nor into what types of galaxies they evolve. We present the results of a single-dish HI survey of local LCBGs undertaken to address these questions. Our results indicate that LCBGs have M(HI) and M(DYN) consistent with low-mass spirals, but typically exhaust their gas reservoirs in less than 2 Gyr. Overall, the properties of LCBGs are consistent with them evolving into high-mass dwarf elliptical or dwarf irregular galaxies or low-mass, late-type spiral galaxies.
In cite{CGH15} we introduced TiRS graphs and TiRS frames to create a new natural setting for duals of canonical extensions of lattices. In this continuation of cite{CGH15} we answer Problem 2 from there by characterising the perfect lattices that are dual to TiRS frames (and hence TiRS graphs). We introduce a new subclass of perfect lattices called PTi lattices and show that the canonical extensions of lattices are PTi lattices, and so are `more than just perfect lattices. We introduce morphisms of TiRS structures and put our correspondence between TiRS graphs and TiRS frames from cite{CGH15} into a full categorical framework. We illustrate our correspondences between classes of perfects lattices and classes of TiRS graphs by examples.
A clock is, from an information-theoretic perspective, a system that emits information about time. One may therefore ask whether the theory of information imposes any constraints on the maximum precision of clocks. Here we show a quantum-over-classic al advantage for clocks or, more precisely, the task of generating information about what time it is. The argument is based on information-theoretic considerations: we analyse how the accuracy of a clock scales with its size, measured in terms of the number of bits that could be stored in it. We find that a quantum clock can achieve a quadratically improved accuracy compared to a purely classical one of the same size.
We present the results of a comparison between the environments of 1) a complete sample of 46 southern 2Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7), 2) a complete sample of 20 radio-quiet type-2 quasars (0.3 < z < 0.41), and 3) a con trol sample of 107 quiescent early-type galaxies at 0.2 < z < 0.7 in the Extended Groth Strip (EGS). The environments have been quantified using angular clustering amplitudes (Bgq) derived from deep optical imaging data. Based on these comparisons, we discuss the role of the environment in the triggering of powerful radio-loud and radio-quiet quasars. When we compare the Bgq distributions of the type-2 quasars and quiescent early-type galaxies, we find no significant difference between them. This is consistent with the radio-quiet quasar phase being a short-lived but ubiquitous stage in the formation of all massive early-type galaxies. On the other hand, PRGs are in denser environments than the quiescent population, and this difference between distributions of Bgq is significant at the 3 sigma level. This result supports a physical origin of radio loudness, with high density gas environments favouring the transformation of AGN power into radio luminosity, or alternatively, affecting the properties of the supermassive black holes themselves. Finally, focussing on the radio-loud sources only, we find that the clustering of weak-line radio galaxies (WLRGs) is higher than the strong-line radio galaxies (SLRGs), constituting a 3 sigma result. 82% of the 2Jy WLRGs are in clusters, according to our definition (Bgq > 400) versus only 31% of the SLRGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا