ترغب بنشر مسار تعليمي؟ اضغط هنا

Kaestner Brackets

77   0   0.0 ( 0 )
 نشر من قبل Sam Nelson
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce textit{Kaestner brackets}, a generalization of biquandle brackets to the case of parity biquandles. This infinite set of quantum enhancements of the biquandle counting invariant for oriented virtual knots and links includes the classical quantum invariants, the quandle and biquandle $2$-cocycle invariants and the classical biquandle brackets as special cases, coinciding with them for oriented classical knots and links but defining generally stronger invariants for oriented virtual knots and links. We provide examples to illustrate the computation of the new invariant and to show that it is stronger than the classical biquandle bracket invariant for virtual knots.



قيم البحث

اقرأ أيضاً

Biquandle brackets are a type of quantum enhancement of the biquandle counting invariant for oriented knots and links, defined by a set of skein relations with coefficients which are functions of biquandle colors at a crossing. In this paper we use b iquandle brackets to enhance the biquandle counting matrix invariant defined by the first two authors in arXiv:1803.11308. We provide examples to illustrate the method of calcuation and to show that the new invariants are stronger than the previous ones.
240 - Klaus Bering 2011
It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e., given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darbo ux-like Theorem via a Nambu-type generalization of Weinsteins splitting principle for Poisson manifolds.
We introduce new invariants associated to collections of compact subsets of a symplectic manifold. They are defined through an elementary-looking variational problem involving Poisson brackets. The proof of the non-triviality of these invariants invo lves various flavors of Floer theory. We present applications to approximation theory on symplectic manifolds and to Hamiltonian dynamics.
We discuss how the integrators used for the Hybrid Monte Carlo (HMC) algorithm not only approximately conserve some Hamiltonian $H$ but exactly conserve a nearby shadow Hamiltonian (tilde H), and how the difference $Delta H equiv tilde H - H $ may be expressed as an expansion in Poisson brackets. By measuring average values of these Poisson brackets over the equilibrium distribution $propto e^{-H}$ generated by HMC we can find the optimal integrator parameters from a single simulation. We show that a good way of doing this in practice is to minimize the variance of $Delta H$ rather than its magnitude, as has been previously suggested. Some details of how to compute Poisson brackets for gauge and fermion fields, and for nested and force gradient integrators are also presented.
A VB-algebroid is a vector bundle object in the category of Lie algebroids. We attach to every VB-algebroid a differential graded Lie algebra and we show that it controls deformations of the VB-algebroid structure. Several examples and applications a re discussed. This is the first in a series of papers devoted to deformations of vector bundles and related structures over differentiable stacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا