ﻻ يوجد ملخص باللغة العربية
Degeneracy (exceptional) points embedded in energy band are distinct by their topological features. We report different hybrid two-state coalescences (EP2s) formed through merging two EP2s with opposite chiralities that created from the type III Dirac points emerging from a flat band. The band touching hybrid EP2, which is isolated, is induced by the destructive interference at the proper match between non-Hermiticity and synthetic magnetic flux. The degeneracy points and different types of exceptional points are distinguishable by their topological features of global geometric phase associated with the scaling exponent of phase rigidity. Our findings not only pave the way of merging EPs but also shed light on the future investigations of non-Hermitian topological phases.
The discovery of novel topological phase advances our knowledge of nature and stimulates the development of applications. In non-Hermitian topological systems, the topology of band touching exceptional points is very important. Here we propose a real
We study the band structure and the density of states of graphene in the presence of a next-to-nearest-neighbor coupling (N2) and a third-nearest-neighbor coupling (N3). We show that for values of N3 larger or equal to 1/3 of the value of the nearest
We propose an efficient optomechanical mass sensor operating at exceptional points (EPs), non-hermitian degeneracies where eigenvalues of a system and their corresponding eigenvectors simultaneously coalesce. The benchmark system consists of two opto
We have investigated the behavior of the resistance of graphene at the $n=0$ Landau Level in an intense magnetic field $H$. Employing a low-dissipation technique (with power $P<$3 fW), we find that, at low temperature $T$, the resistance at the Dirac
Properties of graphene plasmons are greatly affected by their coupling to phonons. While such coupling has been routinely observed in both near-field and far-field graphene spectroscopy, the interplay between coupling strength and mode losses, and it