ﻻ يوجد ملخص باللغة العربية
We study the band structure and the density of states of graphene in the presence of a next-to-nearest-neighbor coupling (N2) and a third-nearest-neighbor coupling (N3). We show that for values of N3 larger or equal to 1/3 of the value of the nearest-neighbor hopping (NN), extra Dirac points appear in the spectrum. If N3 is exactly equal to 1/3 NN, the new Dirac points are localized at the M points of the Brillouin zone and are hybrid: the electrons have a linear dispersion along the GammaM direction and a quadratic dispersion along the perpendicular direction MK. For larger values of N3 the new points have a linear dispersion, and are situated along the MK line. For a value of N3 equal to 1/2 NN, these points merge with the Dirac cones at the K points, yielding a gapless quadratic dispersion around K, while for larger values each quadratic point at K splits again into four Dirac points. The effects of changing the N2 coupling are not so dramatic. We calculate the density of states and we show that increasing the N3 coupling lowers the energy of the Van Hove singularities, and when N3 is larger than 1/3 NN the Van Hove singularities split in two, giving rise to extra singularities at low energies.
The charge carrier density in graphene on a dielectric substrate such as SiO$_2$ displays inhomogeneities, the so-called charge puddles. Because of the linear dispersion relation in monolayer graphene, the puddles are predicted to grow near charge ne
The dynamical approach is applied to ballistic transport in mesoscopic graphene samples of length L and contact potential U. At times shorter than both relevant time scales, the flight time and hslash/U, the major effect of the electric field is to c
We present an experimental study of nonlocal electrical signals near the Dirac point in graphene. The in-plane magnetic field dependence of the nonlocal signal confirms the role of spin in this effect, as expected from recent predictions of Zeeman sp
Effects of disorder on the electronic transport properties of graphene are strongly affected by the Dirac nature of the charge carriers in graphene. This is particularly pronounced near the Dirac point, where relativistic charge carriers cannot effic
Materials with massless Dirac fermions can possess exceptionally strong and widely tunable optical nonlinearities. Experiments on graphene monolayer have indeed found very large third-order nonlinear responses, but the reported variation of the nonli