ﻻ يوجد ملخص باللغة العربية
We propose an efficient optomechanical mass sensor operating at exceptional points (EPs), non-hermitian degeneracies where eigenvalues of a system and their corresponding eigenvectors simultaneously coalesce. The benchmark system consists of two optomechanical cavities (OMCs) that are mechanically coupled, where we engineer mechanical gain (loss) by driving the cavity with a blue (red) detuned laser. The system features EP at the gain and loss balance, where any perturbation induces a frequency splitting that scales as the square-root of the perturbation strength, resulting in a giant sensitivity factor enhancement compared to the conventional optomechanical sensors. For non-degenerated mechanical resonators, quadratic optomechanical coupling is used to tune the mismatch frequency in order to get closer to the EP, extending the efficiency of our sensing scheme to mismatched resonators. This work paves the way towards new levels of sensitivity for optomechanical sensors, which could find applications in many other fields including nanoparticles detection, precision measurement, and quantum metrology.
Recently, sensors with resonances at exceptional points (EPs) have been suggested to have a vastly improved sensitivity due to the extraordinary scaling of the complex frequency splitting of the $n$ initially degenerate modes with the $n$-th root of
Distinct from closed quantum systems, non-Hermitian system can have exceptional points (EPs) where both eigenvalues and eigenvectors coalesce. Recently, it has been proposed and demonstrated that EPs can enhance the performance of sensors in terms of
Degeneracy (exceptional) points embedded in energy band are distinct by their topological features. We report different hybrid two-state coalescences (EP2s) formed through merging two EP2s with opposite chiralities that created from the type III Dira
Properties of graphene plasmons are greatly affected by their coupling to phonons. While such coupling has been routinely observed in both near-field and far-field graphene spectroscopy, the interplay between coupling strength and mode losses, and it
The discovery of novel topological phase advances our knowledge of nature and stimulates the development of applications. In non-Hermitian topological systems, the topology of band touching exceptional points is very important. Here we propose a real