ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on closed-form spread option valuation under log-normal models

92   0   0.0 ( 0 )
 نشر من قبل Hasanjan Sayit
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the papers Carmona and Durrleman [7] and Bjerksund and Stensland [1], closed form approximations for spread call option prices were studied under the log normal models. In this paper, we give an alternative closed form formula for the price of spread call options under the log-normal models also. Our formula can be seen as a generalization of the closed-form formula presented in Bjerksund and Stensland [1] as their formula can be obtained by selecting special parameter values to our formula. Numerical tests show that our formula performs better for certain range of model parameters than the closed-form formula presented in Bjerksund and Stensland [1].



قيم البحث

اقرأ أيضاً

We consider closed-form approximations for European put option prices within the Heston and GARCH diffusion stochastic volatility models with time-dependent parameters. Our methodology involves writing the put option price as an expectation of a Blac k-Scholes formula and performing a second-order Taylor expansion around the mean of its argument. The difficulties then faced are simplifying a number of expectations induced by the Taylor expansion. Under the assumption of piecewise-constant parameters, we derive closed-form pricing formulas and devise a fast calibration scheme. Furthermore, we perform a numerical error and sensitivity analysis to investigate the quality of our approximation and show that the errors are well within the acceptable range for application purposes. Lastly, we derive bounds on the remainder term generated by the Taylor expansion.
Various valuation adjustments, or XVAs, can be written in terms of non-linear PIDEs equivalent to FBSDEs. In this paper we develop a Fourier-based method for solving FBSDEs in order to efficiently and accurately price Bermudan derivatives, including options and swaptions, with XVA under the flexible dynamics of a local Levy model: this framework includes a local volatility function and a local jump measure. Due to the unavailability of the characteristic function for such processes, we use an asymptotic approximation based on the adjoint formulation of the problem.
We consider stochastic volatility models under parameter uncertainty and investigate how model derived prices of European options are affected. We let the pricing parameters evolve dynamically in time within a specified region, and formalise the prob lem as a control problem where the control acts on the parameters to maximise/minimise the option value. Through a dual representation with backward stochastic differential equations, we obtain explicit equations for Hestons model and investigate several numerical solutions thereof. In an empirical study, we apply our results to market data from the S&P 500 index where the model is estimated to historical asset prices. We find that the conservative model-prices cover 98% of the considered market-prices for a set of European call options.
This paper develops the first closed-form optimal portfolio allocation formula for a spot asset whose variance follows a GARCH(1,1) process. We consider an investor with constant relative risk aversion (CRRA) utility who wants to maximize the expecte d utility from terminal wealth under a Heston and Nandi (2000) GARCH (HN-GARCH) model. We obtain closed formulas for the optimal investment strategy, the value function and the optimal terminal wealth. We find the optimal strategy is independent of the development of the risky asset, and the solution converges to that of a continuous-time Heston stochastic volatility model, albeit under additional conditions. For a daily trading scenario, the optimal solutions are quite robust to variations in the parameters, while the numerical wealth equivalent loss (WEL) analysis shows good performance of the Heston solution, with a quite inferior performance of the Merton solution.
Applying the Cherny-Shiryaev-Yor invariance principle, we introduce a generalized Jarrow-Rudd (GJR) option pricing model with uncertainty driven by a skew random walk. The GJR pricing tree exhibits skewness and kurtosis in both the natural and risk-n eutral world. We construct implied surfaces for the parameters determining the GJR tree. Motivated by Mertons pricing tree incorporating transaction costs, we extend the GJR pricing model to include a hedging cost. We demonstrate ways to fit the GJR pricing model to a market driver that influences the price dynamics of the underlying asset. We supplement our findings with numerical examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا