ﻻ يوجد ملخص باللغة العربية
We apply high resolution scanning tunneling microscopy to study intrinsic defect states of bulk FeSe. Four types of intrinsic defects including the type I dumbbell, type II dumbbell, top-layer Se vacancy and inner-layer Se-site defect are extensively analyzed by scanning tunneling spectroscopy. From characterized depression and enhancement of density of states measured in a large energy range, the type I dumbbell and type II dumbbell are determined to be the Fe vacancy and Se$_mathrm{Fe}$ defect, respectively. The top-layer Se vacancy and possible inner-layer Se-site vacancy are also determined by spectroscopy analysis. The determination of defects are compared and largely confirmed in the annular dark-field scanning transmission electron microscopy measurement of the exfoliated FeSe. The detailed mapping of defect states in our experiment lays the foundation for a comparison with complex theoretical calculations in the future.
We present very low temperature (0.15 K) scanning tunneling microscopy and spectroscopy experiments in the layered superconductor LaSb$_2$. We obtain topographic microscopy images with surfaces showing hexagonal and square atomic size patterns, and o
We present a microscopic investigation of frequently observed impurity-induced states in stoichiometric LiFeAs using low temperature scanning tunneling microscopy and spectroscopy (STM/STS). Our data reveal seven distinct well defined defects which a
We consider the problem of local tunneling into cuprate superconductors, combining model based calculations for the superconducting order parameter with wavefunction information obtained from first principles electronic structure. For some time it ha
The discovery of high temperature superconductivity in La[O1-xFx]FeAs at the beginning of this year [1] has generated much excitement and has led to the rapid discovery of similar compounds with as high as 55 K transition temperatures [2]. The high s
The IrTe2 transition metal dichalcogenide undergoes a series of structural and electronic phase transitions when doped with Pt. The nature of each phase and the mechanism of the phase transitions have attracted much attention. In this paper, we repor