ﻻ يوجد ملخص باللغة العربية
The IrTe2 transition metal dichalcogenide undergoes a series of structural and electronic phase transitions when doped with Pt. The nature of each phase and the mechanism of the phase transitions have attracted much attention. In this paper, we report scanning tunneling microscopy and spectroscopy studies of Pt doped IrTe2 with varied Pt contents. In pure IrTe2, we find that the ground state has a 1/6 superstructure, and the electronic structure is inconsistent with Fermi surface nesting induced charge density wave order. Upon Pt doping, the crystal structure changes to a 1/5 superstructure and then to a quasi-periodic hexagonal phase. First principles calculations show that the superstructures and electronic structures are determined by the global chemical strain and local impurity states that can be tuned systematically by Pt doping.
The oxygen dopants are essential in tuning electronic properties of Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_n$O$_{2n+4+delta}$ superconductors. Here we apply the technique of scanning tunneling microscopy and spectroscopy to study the influence of oxygen dopants i
We apply high resolution scanning tunneling microscopy to study intrinsic defect states of bulk FeSe. Four types of intrinsic defects including the type I dumbbell, type II dumbbell, top-layer Se vacancy and inner-layer Se-site defect are extensively
Recent scanning tunneling microscopy (STM) observation of U-shaped and V-shaped spectra (and their mixture) in superconducting Nd$_{1-x}$Sr$_x$NiO$_2$ thin films has been interpreted as presence of two distinct gap symmetries in this nickelate superc
Hexagonal FeSe thin films were grown on SrTiO3 substrates and the temperature and thickness dependence of their electronic structures were studied. The hexagonal FeSe is found to be metallic and electron doped, whose Fermi surface consists of six ell
We have investigated low-temperature crystal structure of BiCh2-based compounds LaO1-xFxBiSSe (x = 0, 0.01, 0.02, 0.03, and 0.5), in which anomalous two-fold-symmetric in-plane anisotropy of superconducting states has been observed for x = 0.5. From