ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning tunneling microscopy of the 32 K superconductor (Sr1-xKx)Fe2As2

127   0   0.0 ( 0 )
 نشر من قبل Eric W. Hudson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of high temperature superconductivity in La[O1-xFx]FeAs at the beginning of this year [1] has generated much excitement and has led to the rapid discovery of similar compounds with as high as 55 K transition temperatures [2]. The high superconducting transition temperatures are seemingly incompatible with the electron-phonon driven pairing of conventional superconductors, resulting in wide speculation as to the mechanism and nature of the superconductivity in these materials. Here we report results of the first scanning tunneling microscopy study of the 32 K superconductor (Sr1-xKx)Fe2As2. We find two distinct topographic regions on the sample, one with no apparent atomic corrugation, and another marked by a stripe-like modulation at double the atomic periodicity. In the latter the stripes appear to modulate the local density of states, occasionally revealing a Delta = 10 mV gap with a shape consistent with unconventional (non-s wave) superconductivity.



قيم البحث

اقرأ أيضاً

We present very low temperature (0.15 K) scanning tunneling microscopy and spectroscopy experiments in the layered superconductor LaSb$_2$. We obtain topographic microscopy images with surfaces showing hexagonal and square atomic size patterns, and o bserve in the tunneling conductance a superconducting gap. We find well defined quasiparticle peaks located at a bias voltage comparable to the weak coupling s-wave BCS expected gap value (0.17 meV). The amount of states at the Fermi level is however large and the curves are significantly broadened. We find T$_c$ of 1.2 K by following the tunneling conductance with temperature.
75As NMR measurements were performed as a function of temperature and doping in (Eu1-xKx)Fe2As2 (x=0,0.38,0.5,0.7) samples. The large Eu2+ moments and their fluctuations are found to dominate the 75As NMR properties. The 75As nuclei close to the Eu2+ moments likely have a very short spin-spin relaxation time (T2) and are wiped out of our measurement window. The 75As nuclei relatively far from Eu2+ moments are probed in this study. Increasing the Eu content progressively decreases the signal intensity with no signal found for the full-Eu sample (x=0). The large 75As NMR linewidth arises from an inhomogeneous magnetic environment around them. The spin lattice relaxation rate (1/T1) for x=0.5 and 0.7 samples is nearly independent of temperature above 100K and results from a coupling to paramagnetic fluctuations of the Eu2+ moments. The behavior of 1/T1 at lower temperatures has contributions from the antiferromagnetic fluctuations of the Eu2+ moments as also the fluctuations intrinsic to the FeAs planes and from superconductivity.
141 - S. Ernst , S. Wirth , F. Steglich 2010
High--quality single crystals of the heavy fermion superconductors CeCoIn$_5$ and CeIrIn$_5$ have been studied by means of low--temperature Scanning Tunneling Microscopy. Methods were established to facilitate textit{in-situ} sample cleaving. Spectro scopy in CeCoIn$_5$ reveals a gap which persists to above $T_c$, possibly evidencing a precursor state to SC. Atomically resolved topographs show a rearrangement of the atoms at the crystal surface. This modification at the surface might influence the surface properties as detected by tunneling spectroscopy.
The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by sym metry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes.
We consider the problem of local tunneling into cuprate superconductors, combining model based calculations for the superconducting order parameter with wavefunction information obtained from first principles electronic structure. For some time it ha s been proposed that scanning tunneling microscopy (STM) spectra do not reflect the properties of the superconducting layer in the CuO$_2$ plane directly beneath the STM tip, but rather a weighted sum of spatially proximate states determined by the details of the tunneling process. These filter ideas have been countered with the argument that similar conductance patterns have been seen around impurities and charge ordered states in systems with atomically quite different barrier layers. Here we use a recently developed Wannier function based method to calculate topographies, spectra, conductance maps and normalized conductance maps close to impurities. We find that it is the local planar Cu $d_{x^2-y^2}$ Wannier function, qualitatively similar for many systems, that controls the form of the tunneling spectrum and the spatial patterns near perturbations. We explain how, despite the fact that STM observables depend on the materials-specific details of the tunneling process and setup parameters, there is an overall universality in the qualitative features of conductance spectra. In particular, we discuss why STM results on Bi$_2$Sr$_2$CaCu$_2$O$_8$ and Ca$_{2-x}$Na$_x$CuO$_2$Cl$_2$ are essentially identical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا