ﻻ يوجد ملخص باللغة العربية
A generalized equation is constructed for a class of classical oscillators with strong anharmonicity which are not exactly solvable. Aboodh transform based homotopy perturbation method (ATHPM) is applied to get the approximate analytical solution for the generalized equation and hence some physically relevant anharmonic oscillators are studied as the special cases of this solution. ATHPM is very simple and hence provides the approximate analytical solution of the generalized equation without any mathematical rigor. The solution from this simple method not only shows excellent agreement with the exact numerical results but also found to be better accuracy in comparison to the solutions obtained from other established approximation methods whenever compared for physically relevant special cases.
This paper presents a new method for solving a class of nonlinear optimal control problems with a quadratic performance index. In this method, first the original optimal control problem is transformed into a nonlinear two-point boundary value problem
We propose a new algorithm for computing the luminosity distance in the flat universe with a cosmological constant based on Shchigolevs homotopy perturbation method, where the optimization idea is applied to prevent the arbitrariness of initial value
We apply a multiple-time version of the reductive perturbation method to study long waves as governed by the Boussinesq model equation. By requiring the absence of secular producing terms in each order of the perturbative scheme, we show that the sol
We present a method devised by Jacobi to derive Lagrangians of any second-order differential equation: it consists in finding a Jacobi Last Multiplier. We illustrate the easiness and the power of Jacobis method by applying it to several equations and
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. The ability to engineer the processes responsible for dissipation and coupling is fundamental to manipulate the state of