ﻻ يوجد ملخص باللغة العربية
We apply a multiple-time version of the reductive perturbation method to study long waves as governed by the Boussinesq model equation. By requiring the absence of secular producing terms in each order of the perturbative scheme, we show that the solitary-wave of the Boussinesq equation can be written as a solitary-wave satisfying simultaneously all equations of the KdV hierarchy, each one in a different slow time variable. We also show that the conditions for eliminating the secularities are such that they make the perturbation theory compatible with the linear theory coming from the Boussinesq equation.
We study the Boussinesq equation from the point of view of a multiple-time reductive perturbation method. As a consequence of the elimination of the secular producing terms through the use of the Korteweg--de Vries hierarchy, we show that the solitar
Under three relations connecting the field variables of Toda flows and that of KdV flows, we present three new sequences of combination of the equations in the Toda hierarchy which have the KdV hierarchy as a continuous limit. The relation between th
We study the Cauchy problem for the Korteweg-de Vries (KdV) hierarchy in the small dispersion limit where $eto 0$. For negative analytic initial data with a single negative hump, we prove that for small times, the solution is approximated by the solu
A generalized equation is constructed for a class of classical oscillators with strong anharmonicity which are not exactly solvable. Aboodh transform based homotopy perturbation method (ATHPM) is applied to get the approximate analytical solution for
We derive a Lagrangian based approach to study the compatible Hamiltonian structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that our treatment of the problem serves as a very useful supplement of the so-called r-matrix