ﻻ يوجد ملخص باللغة العربية
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. The ability to engineer the processes responsible for dissipation and coupling is fundamental to manipulate the state of such systems. This is particularly important in oscillatory states whose dynamic response is used for many applications, e.g. micro and nano-mechanical resonators or sensing and timing, qubits for quantum engineering, and vibrational modes for optomechanical devices. In situations where stable oscillations are required, the energy dissipated by the vibrational modes is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel strategy to maintain stable oscillations, i.e. with constant amplitude and frequency, without supplying external energy to compensate losses. The fundamental intrinsic mechanism of mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon that defies physical intuition, we exploit the nonlinear dynamic response of microelectromechanical (MEMS) oscillators to couple two different vibrational modes through an internal resonance. Since the underlying mechanism describing the fundamentals of this new phenomenon is generic and representative of a large variety of systems, the presented method provides a new dissipation engineering strategy that would enable a new generation of autonomous devices.
All physical systems are to some extent open and interacting with their environment. This insight, basic as it may seem, gives rise to the necessity of protecting quantum systems from decoherence in quantum technologies and is at the heart of the eme
Time-resolved scanning Kerr microscopy has been used to directly image the magnetization dynamics of nano-contact (NC) spin-torque vortex oscillators (STVOs) when phase-locked to an injected microwave (RF) current. The Kerr images reveal free layer m
Engineering nano-mechanical quantum systems possessing ultra-long motional coherence times allow for applications in ultra-sensitive quantum sensing, motional quantum memories and motional interfaces between other carriers of quantum information such
Recent progress in observing and manipulating mechanical oscillators at quantum regime provides new opportunities of studying fundamental physics, for example, to search for low energy signatures of quantum gravity. For example, it was recently propo
We experimentally study the behavior of a parametrically pumped nonlinear oscillator, which is based on a superconducting lambda /4 resonator, and is terminated by a flux-tunable SQUID. We extract parameters for two devices. In particular, we study t