ﻻ يوجد ملخص باللغة العربية
Although heatmap regression is considered a state-of-the-art method to locate facial landmarks, it suffers from huge spatial complexity and is prone to quantization error. To address this, we propose a novel attentive one-dimensional heatmap regression method for facial landmark localization. First, we predict two groups of 1D heatmaps to represent the marginal distributions of the x and y coordinates. These 1D heatmaps reduce spatial complexity significantly compared to current heatmap regression methods, which use 2D heatmaps to represent the joint distributions of x and y coordinates. With much lower spatial complexity, the proposed method can output high-resolution 1D heatmaps despite limited GPU memory, significantly alleviating the quantization error. Second, a co-attention mechanism is adopted to model the inherent spatial patterns existing in x and y coordinates, and therefore the joint distributions on the x and y axes are also captured. Third, based on the 1D heatmap structures, we propose a facial landmark detector capturing spatial patterns for landmark detection on an image; and a tracker further capturing temporal patterns with a temporal refinement mechanism for landmark tracking. Experimental results on four benchmark databases demonstrate the superiority of our method.
Although current face alignment algorithms have obtained pretty good performances at predicting the location of facial landmarks, huge challenges remain for faces with severe occlusion and large pose variations, etc. On the contrary, semantic locatio
We present a method for highly efficient landmark detection that combines deep convolutional neural networks with well established model-based fitting algorithms. Motivated by established model-based fitting methods such as active shapes, we use a PC
In this work, we use facial landmarks to make the deformation for facial images more authentic. The deformation includes the expansion of eyes and the shrinking of noses, mouths, and cheeks. An advanced 106-point facial landmark detector is utilized
Existing Multiple-Object Tracking (MOT) methods either follow the tracking-by-detection paradigm to conduct object detection, feature extraction and data association separately, or have two of the three subtasks integrated to form a partially end-to-
Recently, deep learning based facial landmark detection has achieved great success. Despite this, we notice that the semantic ambiguity greatly degrades the detection performance. Specifically, the semantic ambiguity means that some landmarks (e.g. t