ﻻ يوجد ملخص باللغة العربية
At each time $ninmathbb{N}$, let $bar{Y}^{(n)}=(y_{1}^{(n)},y_{2}^{(n)},cdots)$ be a random sequence of non-negative numbers that are ultimately zero in a random environment $xi=(xi_{n})_{ninmathbb{N}}$ in time, which satisfies for each $ninmathbb{N}$ and a.e. $xi,~E_{xi}[sum_{iinmathbb{N}_{+}}y_{i}^{(n)}(xi)]=1.$ The existence and uniqueness of the non-negative fixed points of the associated smoothing transform in random environments is considered. These fixed points are solutions of the distributional equation for $a.e.~xi,~Z(xi)overset{d}{=}sum_{iinmathbb{N}_{+}}y_{i}^{(0)}(xi)Z_{i}(Txi),$ where when given the environment $xi$, $Z_{i}(Txi)~(iinmathbb{N}_{+})$ are $i.i.d.$ non-negative random variables, and distributed the same as $Z(xi)$. As an application, the martingale convergence of the branching random walk in random environments is given as well. The classical results by Biggins (1977) has been extended to the random environment situation.
We consider vector fixed point (FP) equations in large dimensional spaces involving random variables, and study their realization-wise solutions. We have an underlying directed random graph, that defines the connections between various components of
Let $mathcal{B}$ be the set of rooted trees containing an infinite binary subtree starting at the root. This set satisfies the metaproperty that a tree belongs to it if and only if its root has children $u$ and $v$ such that the subtrees rooted at $u
For an element $g$ of a group $G$, an Engel sink is a subset $mathscr{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathscr{E}(g)$. Let $q$ be a prime, let $m$ be a positive integer and $A$ an e
We give necessary and sufficient conditions for a function in a naturally appearing functional space to be a fixed point of the Ruelle-Thurston operator associated to a rational function, see Lemma 2.1. The proof uses essentially a recent [13]. As an
We consider the sums $S_n=xi_1+cdots+xi_n$ of independent identically distributed random variables. We do not assume that the $xi$s have a finite mean. Under subexponential type conditions on distribution of the summands, we find the asymptotics of t