ترغب بنشر مسار تعليمي؟ اضغط هنا

Tail asymptotics for the supremum of a random walk when the mean is not finite

125   0   0.0 ( 0 )
 نشر من قبل Sergey Foss
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the sums $S_n=xi_1+cdots+xi_n$ of independent identically distributed random variables. We do not assume that the $xi$s have a finite mean. Under subexponential type conditions on distribution of the summands, we find the asymptotics of the probability ${bf P}{M>x}$ as $xtoinfty$, provided that $M=sup{S_n, nge1}$ is a proper random variable. Special attention is paid to the case of tails which are regularly varying at infinity. We provide some sufficient conditions for the integrated weighted tail distribution to be subexponential. We supplement these conditions by a number of examples which cover both the infinite- and the finite-mean cases. In particular, we show that subexponentiality of distribution $F$ does not imply subexponentiality of its integrated tail distribution $F^I$.



قيم البحث

اقرأ أيضاً

We investigate the tail behaviour of the steady state distribution of a stochastic recursion that generalises Lindleys recursion. This recursion arises in queuing systems with dependent interarrival and service times, and includes alternating service systems and carousel storage systems as special cases. We obtain precise tail asymptotics in three qualitatively different cases, and compare these with existing results for Lindleys recursion and for alternating service systems.
Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope $gamma-epsilon$, where $gamma$ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we prove that when $epsilonto 0$, the probability in question decays like $exp{- {beta + o(1)over epsilon^{1/2}}}$, where $beta$ is a positive constant depending on the distribution of the branching random walk. In the special case of i.i.d. Bernoulli$(p)$ random variables (with $0<p<{1over 2}$) assigned on a rooted binary tree, this answers an open question of Robin Pemantle.
We discuss the quenched tail estimates for the random walk in random scenery. The random walk is the symmetric nearest neighbor walk and the random scenery is assumed to be independent and identically distributed, non-negative, and has a power law ta il. We identify the long time aymptotics of the upper deviation probability of the random walk in quenched random scenery, depending on the tail of scenery distribution and the amount of the deviation. The result is in turn applied to the tail estimates for a random walk in random conductance which has a layered structure.
This is a continuation of our earlier work [Stochastic Processes and their Applications, 129(1), pp.102--128, 2019] on the random walk in random scenery and in random layered conductance. We complete the picture of upper deviation of the random walk in random scenery, and also prove a bound on lower deviation probability. Based on these results, we determine asymptotics of the return probability, a certain moderate deviation probability, and the Green function of the random walk in random layered conductance.
We prove distributional limit theorems for the length of the largest convex minorant of a one-dimensional random walk with independent identically distributed increments. Depending on the increment law, there are several regimes with different limit distributions for this length. Among other tools, a representation of the convex minorant of a random walk in terms of uniform random permutations is utilized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا