ﻻ يوجد ملخص باللغة العربية
We study the propagation of sound waves in a binary superfluid gas with two symmetric components. The binary superfluid is constituted using a Bose-Einstein condensate of $^{23}$Na in an equal mixture of two hyperfine ground states. Sound waves are excited in the condensate by applying a local spin-dependent perturbation with a focused laser beam. We identify two distinct sound modes, referred to as density sound and spin sound, where the densities of the two spin components oscillate in phase and out of phase, respectively. The observed sound propagation is explained well by the two-fluid hydrodynamics of the binary superfluid. The ratio of the two sound velocities is precisely measured with no need for absolute density calibration, and we find it in quantitatively good agreement with known interaction properties of the binary system.
In superfluid systems several sound modes can be excited, as for example first and second sound in liquid helium. Here, we excite propagating and standing waves in a uniform two-dimensional Bose gas and we characterize the propagation of sound in bot
Superfluidity in its various forms has fascinated scientists since the observation of frictionless flow in liquid helium II. In three spatial dimensions (3D), it is conceptually associated with the emergence of long-range order (LRO) at a critical te
Time crystals are a phase of matter, for which the discrete time symmetry of the driving Hamiltonian is spontaneously broken. The breaking of discrete time symmetry has been observed in several experiments in driven spin systems. Here, we show the ob
We present a systematic derivation of the effective action for interacting vortices in a non-relativistic two-dimensional superfluid described by the Gross-Pitaevskii equation by integrating out longitudinal fluctuations of the order parameter. There
We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero