ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Two Sound Modes in a Binary Superfluid Gas

110   0   0.0 ( 0 )
 نشر من قبل Yong-il Shin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the propagation of sound waves in a binary superfluid gas with two symmetric components. The binary superfluid is constituted using a Bose-Einstein condensate of $^{23}$Na in an equal mixture of two hyperfine ground states. Sound waves are excited in the condensate by applying a local spin-dependent perturbation with a focused laser beam. We identify two distinct sound modes, referred to as density sound and spin sound, where the densities of the two spin components oscillate in phase and out of phase, respectively. The observed sound propagation is explained well by the two-fluid hydrodynamics of the binary superfluid. The ratio of the two sound velocities is precisely measured with no need for absolute density calibration, and we find it in quantitatively good agreement with known interaction properties of the binary system.



قيم البحث

اقرأ أيضاً

In superfluid systems several sound modes can be excited, as for example first and second sound in liquid helium. Here, we excite propagating and standing waves in a uniform two-dimensional Bose gas and we characterize the propagation of sound in bot h the superfluid and normal regime. In the superfluid phase, the measured speed of sound is well described by a two-fluid hydrodynamic model, and the weak damping rate is well explained by the scattering with thermal excitations. In the normal phase the sound becomes strongly damped due to a departure from hydrodynamic behavior.
Superfluidity in its various forms has fascinated scientists since the observation of frictionless flow in liquid helium II. In three spatial dimensions (3D), it is conceptually associated with the emergence of long-range order (LRO) at a critical te mperature $T_{text{c}}$. One of its hallmarks, predicted by the highly successful two-fluid model and observed in both liquid helium and ultracold atomic gases, is the existence of two kinds of sound excitations, the first and second sound. In 2D systems, thermal fluctuations preclude LRO, but superfluidity nevertheless emerges at a nonzero $T_{text{c}}$ via the infinite-order Berezinskii-Kosterlitz-Thouless (BKT) transition, which is associated with a universal jump in the superfluid density $n_{text{s}}$ without any discontinuities in the fluids thermodynamic properties. BKT superfluids are also predicted to support two sounds, but the observation of this has remained elusive. Here we observe first and second sound in a homogeneous 2D atomic Bose gas, and from the two temperature-dependent sound speeds extract its superfluid density. Our results agree with BKT theory, including the prediction for the universal superfluid-density jump.
Time crystals are a phase of matter, for which the discrete time symmetry of the driving Hamiltonian is spontaneously broken. The breaking of discrete time symmetry has been observed in several experiments in driven spin systems. Here, we show the ob servation of a space-time crystal using ultra-cold atoms, where the periodic structure in both space and time are directly visible in the experimental images. The underlying physics in our superfluid can be described ab initio and allows for a clear identification of the mechanism that causes the spontaneous symmetry breaking. Our results pave the way for the usage of space-time crystals for the discovery of novel nonequilibrium phases of matter.
We present a systematic derivation of the effective action for interacting vortices in a non-relativistic two-dimensional superfluid described by the Gross-Pitaevskii equation by integrating out longitudinal fluctuations of the order parameter. There are no logarithmically divergent coefficients in the equations of motion. Our analysis is valid in a dilute limit of vortices where the intervortex spacing is large compared to the core size, and where number fluctuations of atoms in vortex cores are suppressed. We analyze sound-induced corrections to the dynamics of a vortex-antivortex pair and show that there is no instability to annihilation, suggesting that sound-mediated interactions are not strong enough to ruin an inverse energy cascade in two-dimensional zero-temperature superfluid turbulence.
295 - Zhen-Kai Lu , S.I. Matveenko , 2013
We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean field and many-body (beyond mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles, although the zero sound peak in the structure function is very close to the particle-hole continuum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا